AN OUTRAGEOUS INTEGRAL!!!

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 46

  • @orionspur
    @orionspur Рік тому +30

    Omg... How on Earth does a nested-trig beast like that have a closed form? Amazing.

    • @rohkofantti8673
      @rohkofantti8673 Рік тому +1

      Nature surprises. And Maths 505 surprises every time 😊

  • @kartikeyasaxena3465
    @kartikeyasaxena3465 Рік тому +9

    Wow I have gotta say the result was damn
    clean. Didn't think an integral would be explained so nicely.
    Thanks for sharing all these nice integrals with us . 😄

  • @manstuckinabox3679
    @manstuckinabox3679 Рік тому +4

    I love how intuitive all of this felt, I said it once but I'm starting to get the hang of solving these problems! keepin the summer cool my dude keep it up!

  • @MathOrient
    @MathOrient Рік тому +2

    Your integrals are just getting more daunting day by day 😄

  • @MrWael1970
    @MrWael1970 Рік тому

    Very interesting integral. Very smart substitutions. Thanks you very much.👍

  • @jesusalexisovallesgiuseppe5002

    Holy shit that was amazing

  • @slavinojunepri7648
    @slavinojunepri7648 Рік тому

    The solution is marvelous. Thanks for the insights.

  • @mikeoffthebox
    @mikeoffthebox Рік тому +1

    The nice expansions for cotangents, cosecants etc at the heart of this method are closely related to Weierstrass factorizations, which can be shown efficiently using complex analysis. So there probably are more miraculous looking results along these lines.

  • @paulor.r.correia1789
    @paulor.r.correia1789 Рік тому

    Excelente trabalho 🇧🇷🇧🇷🇧🇷🇧🇷 excelent work

  • @yoav613
    @yoav613 Рік тому

    How did you come up with this integral? Amazing!!!!!💯💯

  • @CthulhuYar
    @CthulhuYar Рік тому

    Thank you for you video! I found your method interesting.
    I solved that integral using complex analysis, just calculated a sum of residues of f(z) = [1-e^(i*tan(z))]/[z^2]. To be clear, I= Int_0^{infty} {sin^2(tanx)/x^2} dx= 1/2*Int_{-infty}^{infty} {sin^2(tanx)/x^2} dx= 1/4*Int_{-infty}^{infty} {[1-cos2(tanx)]/x^2} dx =Re(1/4*Int_{-infty}^{infty} {[1-exp(i*2*tanx)]/x^2} dx) = Re(1/4*2*pi*i*Sum(res(f))
    Then i found residues. tan(z) = z+z^3/3+o(z^3) -> exp(i*tan(z)) = exp(i*[z+z^3/3+o(z^3)]) = 1+i*z+i*z^3/3+[(-1)*z^2]/2+[(-i)*z^3]/6 +o(z^3) = 1+i*z-z^2/2+i*z^3/6+o(z^3) -> f(z) = -[i*z-z^2/2+i*z^3/6+o(z^3)]/z^2 = -i/z+1/2-i*z/6+o(z) -> res(f(z))_{z=0} = -i -> I = Re(1/4*2pi*i*(-i)) = pi/2. :^)

  • @jonsmith8579
    @jonsmith8579 Рік тому

    Hello Maths 505, I love watching your videos even though I am just a beginner in calculus

  • @jcpartri
    @jcpartri Рік тому

    May I ask what drawing program you are using? Very nice results. :-)

  • @maalikserebryakov
    @maalikserebryakov Рік тому

    As a weekly thing could you do another one of those
    “Every way to solve …(insert interesting integral here”” ?
    I loved the one about sin(x) / x and never saw a video on integral calculus that instructive

  • @Jacob.Peyser
    @Jacob.Peyser Рік тому +2

    Do you come up with these solutions on your own?! Because they are absolutely elegant as hell! Okay, maybe not hell, but you get my point. Amazing video!

    • @maths_505
      @maths_505  Рік тому +6

      Mostly yes....or I just modify solutions I learn from others

    • @Jacob.Peyser
      @Jacob.Peyser Рік тому

      @@maths_505 Awesome

  • @erfanmohagheghian707
    @erfanmohagheghian707 Рік тому

    you do integration by parts first and then Lobachevsky formula (or breaking up into segments of length pi, which is the same as the proof to Lobachevsky) and you're done. You wouldn't need the series expansion of cot(z) either.

  • @monikaherath7505
    @monikaherath7505 Рік тому

    Hello. May I ask, where do you get these integrals? Do you do them yourself? Or do you invent them yourself?

    • @maths_505
      @maths_505  Рік тому

      You can find most of em on the internet and some of em I just mess around and create them

  • @RegisteredLate123
    @RegisteredLate123 Рік тому

    hey can you explain how u switched the summation and the integral I didn't know that was allowed

    • @maths_505
      @maths_505  Рік тому

      Look at the integrand:
      There are no problems regarding boundedness or convergence so you can switch up the order of the operators.
      Basically it all boils down to dominated convergence which is trivial in this case.

  • @davegaming8674
    @davegaming8674 Рік тому

    By the fundamental theorem of engineering
    tanx = x
    sinx = x
    Hence
    Sin^2(tanx) = sin^2(x) = x^2
    infinity is just a very large number for all practicality, so the integral is
    Int from 0 to N dx
    Hence we get N
    I'm sorry I couldn't stop myself
    It hurt me to type this too

    • @Sugarman96
      @Sugarman96 Рік тому +2

      You joke, but that approximation for the tangent does yield the correct result.

    • @maths_505
      @maths_505  Рік тому +2

      QED😂

  • @lucasciacovelli7124
    @lucasciacovelli7124 Рік тому

    How Van you prove the switchability of infinite sum and integral?

    • @maths_505
      @maths_505  Рік тому

      It all boils down to dominated convergence which is pretty trivial in this case.

  • @matin_macktoobian
    @matin_macktoobian Рік тому

    I tried to employ the Feynman integration, but inserting free variable $t$ as $sin^{2}(tan tx)$ or $sin^{2}(t tan x)$ did not lead to something familiar to me. Any idea on the regard?

    • @maths_505
      @maths_505  Рік тому

      I don't think Feynman's trick will be useful here.

  • @jayaprakashb1
    @jayaprakashb1 Рік тому

    May I request you to solve Integral from 0 to infinity of ln (1+x)/ (1+x^2). note this is not 0 to 1 (rather 0 to infinity)

    • @thomasblackwell9507
      @thomasblackwell9507 Рік тому

      Integrate 1/(1+x^2) then add do x/(1+x^2) by integration by parts. Add the results of the 2 integrals and you will have the results.

  • @usernameisamyth
    @usernameisamyth Рік тому

    int[sin^2(u)/u^2,u] from -inf to inf= pi
    how?
    can u have a video on that?

    • @maths_505
      @maths_505  Рік тому +1

      Yup
      You can find it in the Feynman integration playlist

    • @Sugarman96
      @Sugarman96 Рік тому +2

      Another cool way to arrive at the result is through the Fourier Transform. The Fourier Transform of a rectangle function from -1 to 1 is sin(w)/w, so you can just use that an Parseval's Identity to instead integrate the rectangle function multiplied by itself.

  • @renesperb
    @renesperb Рік тому

    Very nice ! By the way :MATHEMATiCA can't do it .

  • @thomasblackwell9507
    @thomasblackwell9507 Рік тому

    Where do you find these integrals? Your nightmares or what?

    • @maths_505
      @maths_505  Рік тому +2

      I solved an integral similar to this one a while back.
      I found that one on math stackexchange.
      So I just modified that integral to get the monster integral in the video

  • @emanuellandeholm5657
    @emanuellandeholm5657 Рік тому

    You're basically trolling me RN. Just admit it 505!

    • @maths_505
      @maths_505  Рік тому

      Nah man I'm just integrating wild stuff😂😂😂

  • @nicolascamargo8339
    @nicolascamargo8339 11 місяців тому

    Wow

  • @gerardsagliocca6292
    @gerardsagliocca6292 Рік тому +1

    You go too fast !!! And you don't explain some of your steps involving sign changes you made several times .

  • @vwss-java
    @vwss-java Рік тому +1

    Your caligraphy is almost illegible. Are you a medic?