A satisfying gamma function integral

Поділитися
Вставка
  • Опубліковано 17 лис 2024

КОМЕНТАРІ • 28

  • @herbertdiazmoraga7258
    @herbertdiazmoraga7258 Рік тому +7

    nice result as always! I recommend to you to find the norm of the Hilbert Matrix, the result it's very surprising and it can be obtained with the reflection formula (I think, I tried to do it but y did not achieve it)
    Keep the awesome integrals coming!

  • @mikeoffthebox
    @mikeoffthebox Рік тому +29

    What you are working out here is actually the integral of |x!|^2 along the imaginary axis - as if it were a wavefunction...

    • @DepozidoX
      @DepozidoX Рік тому +2

      That's a fascinating way to view it!

    • @ShanBojack
      @ShanBojack Рік тому

      Can you pls explain

    • @NoNameAtAll2
      @NoNameAtAll2 Рік тому

      you stated your sentence as if there's some other way to do it

  • @MrWael1970
    @MrWael1970 Рік тому

    Very interesting integral and smart solution. Thanks for this video.

  • @jehejhdhdj1135
    @jehejhdhdj1135 Рік тому +2

    I'll try it myself tomorrow then i will watch the video

  • @putianyi8889
    @putianyi8889 Рік тому +3

    I wonder if this can be done by the Parseval's theorem for Mellin transform.

  • @illumexhisoka6181
    @illumexhisoka6181 Рік тому +2

    I tried to solve it before watching the video
    I used the exacte same approache
    Be instead of substituting I used integration by parts at the last

  • @Unidentifying
    @Unidentifying Рік тому +1

    beautiful

  • @nguyenquangkiet2103
    @nguyenquangkiet2103 Рік тому

    The normalization version of Meixner-Pollaczek integral.

  • @Hidensoul1
    @Hidensoul1 Рік тому +2

    An unexpected nice and simple result for this one. When you write 1/(1-x) as a sum for k of x to the k, is it a Taylor serie ?

    • @andy_lamax
      @andy_lamax Рік тому +1

      It is more like a geometric series of ratio x that converges.
      S = 1 + x + x^2 + x^3 + . . .
      is a geometric series with first term (G1=1) and common ration (r = x)
      The sum to infinity of a converging geometric series (A geometric series converges if its common ratio is less that one) is given by
      S = g1/(1-r)
      plugin everything back in
      S = 1 / (1 - x)

    • @maximebree4360
      @maximebree4360 Рік тому +1

      Taylor series is a first approach when you learn series expansion, after Taylor series you see series expansion, which is for some functions the Taylor series at the +infinity order, but for other function when u can't get the n-th derivative it exist other ways

    • @Hidensoul1
      @Hidensoul1 Рік тому +1

      Thanks a lot for your answers. Geometric serie is the first i should had in mind if course ! Not a big deal then. I've got it now

  • @cameronspalding9792
    @cameronspalding9792 10 місяців тому +1

    Couldn’t you make it so that the integrand is proportional to x/sinh(x) instead of x/sinh(pi*x)

    • @maths_505
      @maths_505  10 місяців тому +1

      Bro is scared of π being multiplied by x 💀💀💀

  • @nicogehren6566
    @nicogehren6566 Рік тому

    very nice

  • @erfanmohagheghian707
    @erfanmohagheghian707 Рік тому

    You could've used the evenness in the very beginning!

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    pi/2...ho usato la formula di reflection di hamma....thanks,ho visto che è corretta

  • @UnknownGhost97
    @UnknownGhost97 7 місяців тому

    Question: Did ramanujan invented or used this gamma function theory which now indians are praising him now a lot as the greatest mathematician of all time??

  • @krishnenduchakraborty7000
    @krishnenduchakraborty7000 Рік тому +1

    Can please make a video on transformation of variables in integrals, cause those are confusing to me?

  • @albertohart5334
    @albertohart5334 Рік тому

    You lost me at S = (pi^2)/8 like shouldnt the odd values of 1/n^2 be closer to half of the og sum instead of like the vast majority!!???

    • @ambiguousheadline8263
      @ambiguousheadline8263 6 місяців тому +2

      The terms are getting smaller fast so the early terms contribute most to the value of the sum. 1/(1)^2 = 1 which is already more than half the sum's value in the first term. So clearly the odd terms contribute significantly more to the final result

  • @davidblauyoutube
    @davidblauyoutube Рік тому

    Noice!

  • @maxvangulik1988
    @maxvangulik1988 3 місяці тому

    gamma(1+ix)=ix•gamma(ix)
    gamma(ix)gamma(1-ix)=pi•csc(pi•ix)
    i•csc(ix)=csch(x)
    I=pi•int[-♾️,♾️](x•csch(pi•x))dx
    b=pi•x
    db=pi•dx
    I=int[-♾️,♾️](b•csch(b))db/pi
    b is an odd function of b
    csch(b) is an odd function of b
    odd•odd=even
    I=2/pi•int[0,♾️](b•csch(b))db
    I=4/pi•int[0,♾️](b/(e^b-e^-b))db
    I=4/pi•int[0,♾️](be^-b/(1-e^-2b))db
    I=4/pi•int[0,♾️](be^-b•sum[n=0,♾️](e^-2nb))db
    I=4/pi•sum[n=0,♾️](int[0,♾️](be^-(2n+1)b)db)
    r=(2n+1)b
    dr=(2n+1)db
    I=4/pi•sum[n=0,♾️]((2n+1)^-2•int[0,♾️](re^-r)dr
    I=4/pi•sum[n=0,♾️]((2n+1)^-2)
    sum[n=0,♾️]((n+1)^-2)=pi^2/6
    sum[n=1,♾️]((2n)^-2)=pi^2/24
    I=4/pi•(pi^2/6-pi^2/24)
    I=pi/2

  • @GirlyOrbs
    @GirlyOrbs Рік тому

    When you don’t know what tf this is or even means🗿

  • @angeldude101
    @angeldude101 Рік тому

    Setting aside the use of the gamma function over the pi function and the use of pi instead of tau, I burst out laughing when the integral somehow managed to reduce to 1!. It was also then that I realized we had long since left the ℂomplex plane. That was actually really cool!