TPR,FPR,FNR,TNR, Confusion Matrix

Поділитися
Вставка
  • Опубліковано 30 січ 2025

КОМЕНТАРІ • 83

  • @vaibhavchhabra6270
    @vaibhavchhabra6270 5 років тому +24

    at 3:19, please correct the confusion matrix.The TN should be 1 instead of 0.

  • @midhileshmomidi2434
    @midhileshmomidi2434 5 років тому +4

    This is the best video on Confusion matrix explanation

  • @saravanakumarmuthumani871
    @saravanakumarmuthumani871 5 років тому +7

    Nice explanation :) Following your videos regularly. Thanks for the detailed explanation

  • @RaviRanjan_ssj4
    @RaviRanjan_ssj4 5 років тому +2

    I think your channel deserves atleast 100k subscribers by now.

  • @anandh9872
    @anandh9872 5 років тому +1

    Thank you so much for the very nice explanation, after all, videos here MY DOUBT GOT CLEARED. Once again thank you, Sir.

  • @harshjoshi1067
    @harshjoshi1067 5 років тому +1

    Sir your all video lectures are more informative and it relly very helpfull thankyou so much sir🙏🙏🙏🙏

  • @someshkb
    @someshkb 4 роки тому +1

    Thank you so much for the simplest explanation. Awesome

  • @adityabhatnagar9478
    @adityabhatnagar9478 4 роки тому +1

    Clearly explained the confusion matrix. Thank you

  • @mittalparikh
    @mittalparikh 4 роки тому +1

    Awesome, Your passion is amazing

  • @shivamsrivastava416
    @shivamsrivastava416 5 років тому +1

    Awesome Explanation Sir

  • @pratikchatterjee5992
    @pratikchatterjee5992 5 років тому +8

    Hi Krish,
    Nice Video and well explained. Although I would like to point out on the FNR which is FN/P=FN/(FN+TP).
    Confusion matrix is always confusing.
    Love your work and I have started following you.

  • @smiley1059
    @smiley1059 Рік тому

    Awesome explanation

  • @abhinai2713
    @abhinai2713 4 роки тому

    best explanation on confusion matrix

  • @hiteshdamani30
    @hiteshdamani30 5 років тому +2

    Amazing Explanation giving by Krish Naik Sir. Before that i had watched a lot of explanations on confustion matrix and still it was confusing to me. After watching this video not it can be forgettable.
    Thank you soo much sir. For all your efforts...

  • @h.m.sibghatullah7699
    @h.m.sibghatullah7699 5 років тому +1

    very good explanation

  • @theinhumaneme
    @theinhumaneme Рік тому

    Great Video :D
    Thank you Krish

  • @laxmanbisht2638
    @laxmanbisht2638 3 роки тому

    Nicely explained

  • @louerleseigneur4532
    @louerleseigneur4532 3 роки тому

    Thanks Krish

  • @farhadkhan3893
    @farhadkhan3893 2 роки тому

    Awesome , Got it very clear , thank you

  • @shivamtiwari2468
    @shivamtiwari2468 Рік тому

    nice explanation sir

  • @rahimsarker1839
    @rahimsarker1839 Рік тому

    Thank you sir for clear explanation.

  • @MohammedYousuf-ti2er
    @MohammedYousuf-ti2er 2 роки тому

    brother u are a legend

  • @oussamajmaa9205
    @oussamajmaa9205 2 роки тому

    great tutorial , please keep uploading more on topics like this , thank you so much

  • @sudhabharu123
    @sudhabharu123 4 роки тому

    Excellent Video. Thank you for making this so easy.

  • @ehtishamraza2623
    @ehtishamraza2623 5 років тому +1

    Thanks Sir you are giving us a great learning stuff

  • @ramkrishnagoswami9125
    @ramkrishnagoswami9125 4 роки тому

    Great lecture ever

  • @rajeshs2840
    @rajeshs2840 5 років тому +2

    at 19:25 FPR = 1 , because FPR = FP/(FP+TN) and FPR + TNR =1

  • @Diamond_Hanz
    @Diamond_Hanz 2 роки тому +1

    THANK YOU SIR

  • @ravigadadi6207
    @ravigadadi6207 5 років тому +1

    Very nice explanation bro.Subscribed! Keep doing same kind of videos :)

  • @sujangajananachari2814
    @sujangajananachari2814 2 роки тому

    nice video

  • @tonnysaha7676
    @tonnysaha7676 3 роки тому

    Thank you🙏

  • @raman11961
    @raman11961 5 років тому +10

    FPR is FP/N. Not FP/P

  • @tahabimuhammad4524
    @tahabimuhammad4524 5 років тому +6

    Nice video, at 2:53 shouldn't we put value 1 instead of 0 when we get 0 for both actual and predicted value y and y-hat?

  • @tejasarondekar375
    @tejasarondekar375 4 роки тому

    you could use That electronic pad for writing, it would be nice overall learned something important.

  • @adarshnamdev5834
    @adarshnamdev5834 4 роки тому +11

    You wrote TP FP TN FN inside the Confusion Matrix cells in the case of binary classification. But, how are we going to right such notation in case of multi-class classification ?

    • @sukumarroychowdhury4122
      @sukumarroychowdhury4122 4 роки тому +2

      ua-cam.com/video/HBi-P5j0Kec/v-deo.html

    • @brownmunde4086
      @brownmunde4086 2 роки тому

      For multi class too it has been discuss. Krish has taken 5 multi class example

  • @mahalerahulm
    @mahalerahulm 4 роки тому +19

    TPR = TP/(TP+FN),
    TNR = TN/(FP+TN)
    FPR = FP/(FP+TN) //correction needed
    FNR = FN/(TP+FN) // correction needed

  • @kishorejuniordeveloper4361
    @kishorejuniordeveloper4361 4 роки тому

    super sir

  • @mutyaluamballa
    @mutyaluamballa 3 роки тому

    i like the explaination, but any intuition behind the rates.

  • @anuvratshukla7061
    @anuvratshukla7061 4 роки тому

    Awesome

  • @harshjoshi1067
    @harshjoshi1067 5 років тому +1

    Sir please make video on roc curve🙏🙏

  • @phanikumar3136
    @phanikumar3136 4 роки тому

    Krish fpr and fnr are explained in wrong way so plzz crt them many of the subscribers following u so plzzz crt them.... And we love the way u teach us... Tq krish..

  • @iamrahul_29
    @iamrahul_29 4 роки тому +2

    Hello @Krish, in this lecture you wrote wrong formula for FPR and FNR. FPR = FP / N = FP / (FP + TN); FNR = FN /(FN + TP). But you did correct in your Data Science Interview Question Playlist. Please let me know if I'm right.

  • @adiflorense1477
    @adiflorense1477 4 роки тому +6

    2:54 sir, i thought TN is count 1

    • @paikmayu
      @paikmayu 3 роки тому +1

      your correct

  • @learnds2210
    @learnds2210 4 роки тому +1

    Nice explanation Krish, always love your videos. Just one correction, the formula for FPR, FNR is incorrect on the slide. Just check once and update. Thank you

    • @vamsireddy5174
      @vamsireddy5174 4 роки тому

      Tell the formula bro.. he didnt give any reply

  • @3663johnny
    @3663johnny 5 років тому

    Now it looks clear for me

  • @ShivamTiwari-hu6hg
    @ShivamTiwari-hu6hg Рік тому

    Hi i think in the confusion matrix the (0,0) should also be 1 right but you have denoted it as 0

  • @hemalathajayaraman2669
    @hemalathajayaraman2669 24 дні тому

    Hi Krish- in this session, Actual '0' and predicted '0' should be '1' and not '0'. Correct me if I am wrong

  • @quangnguyen-tm6nu
    @quangnguyen-tm6nu 2 роки тому

    hi your link is invalid. how may i find a one? thanks

  • @anilpathi4870
    @anilpathi4870 3 роки тому

    sir good explanation, can we categorize fake reviews and genuine reviews using confusion matrix?

  • @snigdharay9675
    @snigdharay9675 5 років тому

    So, If the data set is imbalanced then how to make it balanced? or how can we predict the correct accuracy from this type of data sets?

  • @meghachoudhary3394
    @meghachoudhary3394 5 років тому

    Hello sir, please create video on ROC curves.

  • @aashishraina2831
    @aashishraina2831 4 роки тому +1

    u mentioned FNR=FN/(FP+TN) . Is it correct , or we should say FNR=FN/(FN+TP)

  • @someshshrivas3143
    @someshshrivas3143 4 роки тому

    Sir,How we apply confusion matrix on large datasets

  • @Manish-cn3nr
    @Manish-cn3nr 8 місяців тому

    Hi Krish, I assume all the video is in sequence ..

  • @pradheepm1371
    @pradheepm1371 4 роки тому

    How to reduce the false positive and false negative to make our model better one

  • @shashanktripathi3034
    @shashanktripathi3034 3 роки тому

    SIR FOR Confusion Matrix of multi-class are there any concepts of TP, FP, TN, FN.

  • @akashpoudel571
    @akashpoudel571 5 років тому

    sir false positive n false negative is it correct???

  • @mannankohli
    @mannankohli 5 років тому

    hi there,
    i m working with election predictions. i have developed the model using 2018 election data-set and test it on 2013 and 2008 election data-set. now my question is that how to get the mean of all confusion matrix for three elections in one single model.

  • @pradeepvn8627
    @pradeepvn8627 5 років тому

    If 900 results are Correct means it can be True Positive or True Negative. Similarly if 100 results are wrong, it can False Positive or False Negative. Please correct me if my understanding is wrong.

  • @akashgayakwad9550
    @akashgayakwad9550 5 років тому

    At 2:54 ,in forth block u wrote 0 but I think it might be 1...
    Am I right or wrong please reply?

    • @ankurkaiser
      @ankurkaiser 4 роки тому

      Should have been 1. He missed it, anyways even this scenario can be accepted.

  • @souravsaha6757
    @souravsaha6757 4 роки тому

    Krish u explain in an awesome way but Formula for FPR and FNR is wrong ! Formula for FPR is (FP/N) i.e. FPR=FP/(TN+FP) and formula for FNR is (FN/P) i.e. FNR = FN/(TP+FN)

  • @Said9967
    @Said9967 5 років тому +5

    I think you need to switch FP and FN !

    • @joeljoseph26
      @joeljoseph26 3 роки тому

      no. he is right. check the predicted and actual labels.

  • @rahulnarhare8660
    @rahulnarhare8660 3 роки тому

    FPR=FP/(FP+TN)
    FNR=FN/(FN+TP)

  • @OceanActions
    @OceanActions 2 роки тому

    How does 0,0 become 0 not 1

  • @georgedonga9208
    @georgedonga9208 5 років тому +1

    19:50 tpr calculation was wrong

    • @krishnaik06
      @krishnaik06  5 років тому +1

      Hey George,
      Yes just made a small mistake.Sorry for that.

    • @ashwinimandani2829
      @ashwinimandani2829 4 роки тому

      @@krishnaik06 what should be the correct value?

  • @somnathbanerjee8672
    @somnathbanerjee8672 2 роки тому +1

    Wrong formula. How confidently he is teaching wrong formula!

  • @pulaknath1962
    @pulaknath1962 Рік тому

    change your thumbnail . thumbnail showing multiclass and you r discussing 2x2

  • @madankhatri7727
    @madankhatri7727 Рік тому

    great tutorial , please keep uploading more on topics like this , thank you so much