18.5 Gibbs Free Energy and the Equilibrium Constant

Поділитися
Вставка
  • Опубліковано 20 сер 2024
  • Chad explains the relationship between the standard Gibbs Free Energy and the Equilibrium Constant and to perform related calculations.
    00:20 - Standard Conditions
    02:55 - Delta G under Non-Standard Conditions
    04:05 - Delta G Standard (generalizations)
    I've created a general chemistry page that organizes all my videos by chapter - just an easier way for you to watch my UA-cam videos. Check it out at www.chadsprep....
    Happy Studying!

КОМЕНТАРІ • 93

  • @breezle693
    @breezle693 5 років тому +36

    Where have you been during my last 3 semesters of chemistry?! Wonderfully explained!

    • @ChadsPrep
      @ChadsPrep  5 років тому +15

      I've been here the whole time...where have you been? Glad you finally came across these Breezle and glad they're helpful!

  • @Computer-rd3pq
    @Computer-rd3pq Рік тому +3

    This guys need some serious recognition. OP teaching keep it up

  • @ee-zm3hz
    @ee-zm3hz Рік тому +5

    You're an absolute legend. We have this in our metabolism module for uni and it looked quite daunting at first. Thanks so much Chad!

    • @ChadsPrep
      @ChadsPrep  Рік тому +1

      You're welcome and Thank You.

  • @nastarannazari5062
    @nastarannazari5062 2 роки тому +2

    how lucky your students are! I wish you were my teacher!. God bless you

    • @ChadsPrep
      @ChadsPrep  2 роки тому +1

      Thanks for saying so!

  • @nioshamajedi4712
    @nioshamajedi4712 5 років тому +7

    Good lecture I wish my professor was as passionate!

  • @blacknmedicine
    @blacknmedicine 4 роки тому +11

    im in college taking biochem and this was a real good explanation helps you connect everything

  • @namhd9565
    @namhd9565 4 роки тому +6

    Great explanation, it really helped me. I was confused between standard del G and del G. Thank you

    • @ChadsPrep
      @ChadsPrep  4 роки тому +1

      Glad it was helpful!🙂

  • @KoinoniacommunityTheologicalce
    @KoinoniacommunityTheologicalce 3 місяці тому +1

    Well explained! Thank you Mr. Chad, Appreciate it.💓💕🥰🥰🥰

    • @ChadsPrep
      @ChadsPrep  3 місяці тому +1

      You're welcome and Thank You!

  • @robhousehold
    @robhousehold 4 роки тому +4

    I learned more in the first 3 minutes than 3 whole days of lecture.

    • @ChadsPrep
      @ChadsPrep  4 роки тому +1

      😂😂😂 Yikes!

    • @robhousehold
      @robhousehold 4 роки тому

      @@ChadsPrep im not kidding I dropped CHM 2. Now I passed Chem 2!!! Thank you soo much ♥

    • @ChadsPrep
      @ChadsPrep  4 роки тому

      @@robhousehold You're very welcome and congrats on passing Chem 2! Glad I could be a part of the process!

  • @AryanRaj-er3pd
    @AryanRaj-er3pd 2 роки тому

    I overlooked the fact that all concentrations were 1 in standard conditions and was breaking my brain over this equation. This video just cleared it all up in 10 minutes
    Thanks a lot for doing what you do!

    • @ChadsPrep
      @ChadsPrep  2 роки тому

      Excellent, AR - glad the video helped you out!

  • @RugsRabbit
    @RugsRabbit 3 роки тому

    couldve watched 2 hours of my maniac instructor but i thankfully found your videos, cheers

    • @ChadsPrep
      @ChadsPrep  3 роки тому

      Glad you found us, RR - thanks for the comment!

  • @angelaroxette5371
    @angelaroxette5371 4 роки тому

    The explanation was very clear. This was not in the syllabus when I studied but now as a teacher, I have to teach it. So I was trying to figure out how to best explain to my students and this was extremely helpful. Thank you so much.

    • @ChadsPrep
      @ChadsPrep  4 роки тому

      Awesome Angela and I love it! Congratulations on being in the best profession ever!

  • @dq9021
    @dq9021 6 років тому +5

    Wonderful lecture.

  • @Eric-sq4hd
    @Eric-sq4hd 5 років тому +1

    dude. you make things so clear. thank you.

    • @ChadsPrep
      @ChadsPrep  5 років тому +3

      You're very welcome dude...er I mean Eric!

  • @eukaryotic0703
    @eukaryotic0703 4 роки тому

    I have just spent the last three hours on a problem and only just found correct answer at the end of this video when I converted joules to kJ. thank you lol

    • @ChadsPrep
      @ChadsPrep  4 роки тому

      Excellent! I do my best to include the common places where errors are made. Glad you found it helpful (but sorry it took 3 hours)!

  • @kwakuappiah5691
    @kwakuappiah5691 2 роки тому +1

    Wow great teachers really exist? who would have known

    • @ChadsPrep
      @ChadsPrep  2 роки тому

      "Hiding" in the vastness of UA-cam - you found me! Thanks for the kind words, kwaku appiah.

  • @yaasinalam9463
    @yaasinalam9463 5 років тому +1

    Great video. I’m on the college level and this video is so helpful

    • @ChadsPrep
      @ChadsPrep  5 років тому +1

      Awesome Yaasin! Thanks for the compliment!

  • @gardenerpeng4446
    @gardenerpeng4446 5 років тому +2

    Such a good explanation! Thank you so much!

    • @ChadsPrep
      @ChadsPrep  5 років тому +1

      Thanks Qing! Glad you found it helpful!

  • @rowenang6761
    @rowenang6761 6 років тому +2

    This is very helpful. THANK YOU.

  • @ranacu
    @ranacu 2 роки тому +1

    This is gold!

  • @assassinforce5637
    @assassinforce5637 3 місяці тому

    Very clear. Thank you

  • @alhussainal-owaidhani9957
    @alhussainal-owaidhani9957 Рік тому

    Such a good explanation! Thank you so much!
    regards
    KSA

    • @ChadsPrep
      @ChadsPrep  Рік тому

      You're welcome and Thank You.

  • @brandonfarinha4895
    @brandonfarinha4895 Рік тому +1

    I like your perspicacity

    • @ChadsPrep
      @ChadsPrep  Рік тому +1

      Glad you think so, Brandon - I like your word usage!

  • @sroydetroy6404
    @sroydetroy6404 Рік тому +1

    great explanation. subscribed

    • @ChadsPrep
      @ChadsPrep  Рік тому +1

      Glad to hear it - thanks!

  • @chamudithalakshan7563
    @chamudithalakshan7563 3 роки тому

    NICELY EXPLAINED

    • @ChadsPrep
      @ChadsPrep  3 роки тому

      Glad you enjoyed it, Chadmuditha - thanks for saying so.

  • @alexrosellverges8345
    @alexrosellverges8345 5 років тому +1

    Wow, really cool lecture, thank you very much!

    • @ChadsPrep
      @ChadsPrep  5 років тому

      You're welcome Alex! Thanks for the feedback

  • @navyblueskiess
    @navyblueskiess 6 місяців тому

    Thank you

    • @ChadsPrep
      @ChadsPrep  6 місяців тому +1

      You're welcome!

  • @jjainam9
    @jjainam9 Рік тому +1

    Love from India 🇮🇳
    IIT JEE & NEET mark your attendance.😂

    • @ChadsPrep
      @ChadsPrep  Рік тому

      Thanks from U.S.A. - you are counted!

  • @alfredjackson1620
    @alfredjackson1620 Рік тому

    Im just wondering what the ICE table would look like for a standard condition reaction. If I use Hess's law to calculate standard free energy from a chemical equation, in my ICE table in the "initial concentration" row i would have 1 M for products and reactants, then in my "change concentration" the changes would be the coefficients times the variable "x". From the way i use hess's law it would make sense that the variable x=1 since in hess's law i just use the coefficients from the chemical equation as they are to multiply by the standard free energy of formations. But then if the coefficients in my chemical equation are not simply just ones i can end up with negative final reactant concentrations. something doesnt add up.

  • @bisaj04
    @bisaj04 2 роки тому +1

    i am studying this in class 12th India for jee.

  • @bobbobson4030
    @bobbobson4030 3 роки тому

    What does standard free energy mean in this context? Is it free energy exchanged starting from the initial concentrations? Starting with reactants and no products?

  • @stimulantdaimamld2099
    @stimulantdaimamld2099 Рік тому

    great

  • @lifestylewithlee2242
    @lifestylewithlee2242 3 роки тому

    Thank u.. ❤️❤️❤️

    • @ChadsPrep
      @ChadsPrep  3 роки тому

      You're welcome 😊 - thanks for the comment!

  • @pedrorivasmesias698
    @pedrorivasmesias698 6 років тому +1

    keq is the one you get from the pressure(kp) or from concentration(kc)? because if the variation of gas moles is not equal to 0 Kc and kp are different.
    Greetings from spain!

  • @qwjacklin
    @qwjacklin 2 роки тому +1

    Very nice lecture! One question: where did the equation ∆G=∆G0+RTlnQ come from?

    • @ChadsPrep
      @ChadsPrep  2 роки тому +2

      Hey Karl - you mean how it is derived or who derived it?

    • @qwjacklin
      @qwjacklin 2 роки тому +1

      @@ChadsPrep Thanks for replying! Yes, how or from what basis was it derived?

  • @LR13-i1h
    @LR13-i1h 3 роки тому

    Hello, In here you used delta G for the examples with the formula (Formula for Delta G @ stand con. and Delta G @ non-stand con.) Would it also apply with Delta S or Delta H? (meaning I could just use the exact same formula just change the symbols/letters)

  • @sasikalar7962
    @sasikalar7962 4 роки тому

    Why change in free energy is zero at equilibrium? And why it should be at reversible process?

    • @ChadsPrep
      @ChadsPrep  4 роки тому

      A reaction will always proceed to a minimum in free energy which is why for a spontaneous reaction delta G is negative. But once a reaction reaches that minimum point it has reached equilibrium and can go no lower in free energy. So at that point the free energy is no longer changing and delta G is zero. Hope this helps!

    • @sasikalar7962
      @sasikalar7962 4 роки тому

      @@ChadsPrep Thank you sir

  • @jankajakajakaa1457
    @jankajakajakaa1457 2 роки тому

    Hai sir, from kerala

  • @leonardolucero7853
    @leonardolucero7853 Рік тому

    shi made perfect sense 🙏🙏

    • @ChadsPrep
      @ChadsPrep  Рік тому

      Glad you found the channel!

  • @harshitgupta935
    @harshitgupta935 4 роки тому

    hello, how can the standard Gibbs energy be defined for 1 mol of reactants and products when the stoichiometric coefficients can be diff

    • @ChadsPrep
      @ChadsPrep  4 роки тому +2

      Hello Harshit, standard conditions refers to the concentration of aqueous reactants being 1 Molar or gaseous reactants being present with a partial pressure of 1atm, and this is completely independent of any of the coefficients in the balanced reaction. Keep in mind that the coefficients in a balanced reaction NEVER tell you how much of the reactants you have, but simply the ratio in which they react and are produced. Take for example:
      N2 + 3H2 --> 2NH3
      The balance reaction doesn't mean that we have 1 mole of N2 and 3 moles H2. It simply means that N2 and H2 will react in a 1:3 ratio. For every mole of N2 consumed, 3 times as many moles H2 will be consumed at the same time.
      Hope this helps to clarify!

  • @kipling1957
    @kipling1957 6 років тому +1

    You explained the link between these concepts well mathematically but not intuitively. How actually (at the physical/chemical level) does reactant/product concentrations (Q) affect delta G? E.g., is there some sort of modulation of entropy? I have no idea! Maths has never "explained" anything to me, just rules for a numbers game.

  • @devikanair44
    @devikanair44 4 роки тому

    hi chad! your videos are so helpful! I had a question about delta g standard state. so i know you said at equilibrium delta g will equal zero so you can just rearrange the equation and solve for delta g standard. but I thought this was a fixed value in a textbook? so then does this new value of delta g standard tell us if the reaction is spontaneous at equilibrium at a certain temperature? thank you!

    • @ChadsPrep
      @ChadsPrep  4 роки тому +2

      Hi Devika! Delta G standard is simply the delta G value under standard conditions (not at equilibrium). And those standard conditions are where all aqueous reactants and products are present at 1M concentrations and all gaseous reactants and products are present at 1 atm partial pressures. So when delta G standard is negative then we know that the reaction will be spontaneous under standard conditions and will therefore end up at equilibrium having more products than reactants and an equilibrium constant greater than 1 (If delta G standard < 0, then K > 1).
      And if delta G standard is positive then we know that the reaction will be nonspontaneous under standard conditions (or spontaneous in the reverse direction) and will therefore end up at equilibrium having more reactants than products and an equilibrium constant less than 1 (If delta G standard > 0, then K < 1). Hope this helps!

    • @devikanair44
      @devikanair44 4 роки тому

      @@ChadsPrep Hey Chad! Yes I understood that part! But what confuses me is when at equilibrium the new formula becomes delta g standard = -RTlnK so when we solve for this delta g standard does this tell us spontaneity even though we're not at standard conditions? I'm just trying to clarify for myself when to use which formula! Thanks for your help!!

    • @ChadsPrep
      @ChadsPrep  4 роки тому +1

      @@devikanair44 So the non-intuituive part of this is that the Equilibrium Constant is mathematically related to the Delta G value under standard conditions. This is not intuitive at all as they correspond to two different conditions: standard conditions and equilibrium. But I think the key is realizing that the equation doesn't imply that they are the same conditions, but just that the Delta G at one condition (standard conditions) is related to the ratio of products to reactants at another condition (Equilibrium). I don't know if this helped untangle it at all for you but I gave it a shot! 🙂

    • @devikanair44
      @devikanair44 4 роки тому +1

      @@ChadsPrep thank you so much, you're amazing!!

  • @yourdailydoseofreality3219
    @yourdailydoseofreality3219 4 роки тому

    Is there a reaction for which standard G is the G at equilibrium?

    • @ChadsPrep
      @ChadsPrep  4 роки тому

      For this to be true you'd be looking for a reaction with an equilibrium constant of 1.0, but you'd also have to manipulate the equilibrium concentrations of the reactants and products to be 1M for it to be considered standard conditions. So while it is possible it would be a somewhat unique reaction under a very unique set of circumstances. Hope this helps!

    • @yourdailydoseofreality3219
      @yourdailydoseofreality3219 4 роки тому

      Chad's Prep It was very helpful. Thank you so much!

  • @RRRP40
    @RRRP40 2 роки тому

    Johnny bhaiya

  • @monemore-animations.9018
    @monemore-animations.9018 2 роки тому

    🤩🤩

  • @fenrir834
    @fenrir834 Рік тому

    No derivation?

    • @ChadsPrep
      @ChadsPrep  Рік тому

      Which part of the video is this about?

  • @friendsnation7934
    @friendsnation7934 Рік тому

    I thought u r jonny😅😅😅😅

    • @ChadsPrep
      @ChadsPrep  Рік тому

      Chad's the name - welcome to the channel!