- 250
- 1 065 763
Regorz Statistics
Germany
Приєднався 4 січ 2018
Regorz Statistics is committed to explain modern statistical methods to you without a lot of mathematics and formulas, so that you can understand them and apply them confidently.
You will find tutorials on statistics with an emphasis on mediation, moderation and moderated mediation as well as on path analysis.
Some of the videos are accompanied by a text version and supplementary material, the link to the download is always in the description. An overview of all tutorials can be found here:
www.regorz-statistik.de/en/tutorials_en.html
Best regards,
Arndt Regorz
Imprint:
Arndt Regorz
Alemannenstr. 6
D-44793 Bochum
Germany
mail@regorz-statistik.de
www.regorz-statistik.de
Tel. +49 162 594 7736
Terms and conditions, privacy policy and information on out-of-court dispute resolution:
t1p.de/9zz3
You will find tutorials on statistics with an emphasis on mediation, moderation and moderated mediation as well as on path analysis.
Some of the videos are accompanied by a text version and supplementary material, the link to the download is always in the description. An overview of all tutorials can be found here:
www.regorz-statistik.de/en/tutorials_en.html
Best regards,
Arndt Regorz
Imprint:
Arndt Regorz
Alemannenstr. 6
D-44793 Bochum
Germany
mail@regorz-statistik.de
www.regorz-statistik.de
Tel. +49 162 594 7736
Terms and conditions, privacy policy and information on out-of-court dispute resolution:
t1p.de/9zz3
R: Latent Class Growth Analysis (LCGA)
This tutorial shows you how to perform latent trajectory modeling, specifically with the technique of latent class growth analysis (LCGA), using R and the flexmix package.
R-code LCGA:
www.regorz-statistik.de/en/r_lcga.html
Tutorial with data:
Wardenaar, K. (2020). Latent Class Growth Analysis and Growth Mixture Modeling using R: A tutorial for two R-packages and a comparison with Mplus.
psyarxiv.com/m58wx/download?format=pdf
Why to use ICL as a fit index:
Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7), 719-725.
How to report results:
Van De Schoot, R., Sijbrandij, M., Winter, S. D., Depaoli, S., & Vermunt, J. K. (2017). The GRoLTS-checklist: guidelines for reporting on latent trajectory studies. Structural Equation Modeling: A Multidisciplinary Journal, 24(3), 451-467.
R-code LCGA:
www.regorz-statistik.de/en/r_lcga.html
Tutorial with data:
Wardenaar, K. (2020). Latent Class Growth Analysis and Growth Mixture Modeling using R: A tutorial for two R-packages and a comparison with Mplus.
psyarxiv.com/m58wx/download?format=pdf
Why to use ICL as a fit index:
Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7), 719-725.
How to report results:
Van De Schoot, R., Sijbrandij, M., Winter, S. D., Depaoli, S., & Vermunt, J. K. (2017). The GRoLTS-checklist: guidelines for reporting on latent trajectory studies. Structural Equation Modeling: A Multidisciplinary Journal, 24(3), 451-467.
Переглядів: 70
Відео
APA7: Journalartikel im Literaturverzeichnis - Regeln und Fehlerquellen
Переглядів 27День тому
Dieses Tutorial erklärt Ihnen die wesentlichen Regeln, die Sie beachten müssen, wenn Sie den Eintrag für einen Journalartikel in einem Literaturverzeichnis erstellen und geht auch auf Fehlerquellen ein, die mir häufiger beim Korrekturlesen begegnen.
Mediation PROCESS Model 4: How to Test the Assumptions
Переглядів 14414 днів тому
This tutorial shows you how to check the regression assumptions for a mediation analysis (Hayes' Process macro, model template 4). My consulting website: www.regorz-statistik.de/en/consulting.html Content: 0:00 Introduction 0:52 Normality 2:19 Homoscedasticity 3:32 Linearity 4:27 Independence 5:22 No multicollinearity 6:21 No outliers
Moderated Mediation: G*Power (Sample Size) Mod. 7, 8, 14, 15
Переглядів 26921 день тому
Sample size (a-priori power) for a moderated mediation with Hayes' PROCESS macro, based on the free tool G*Power. My consulting services for moderated mediation: www.regorz-statistik.de/en/consulting.html Here is the text version of this tutorial: www.regorz-statistik.de/en/power_moderated_mediation.html Content: 0:00 Introduction 3:15 Model 7 very different effect sizes 6:01 Model 7 moderately...
Normalverteilung Mehrebenenmodell in R prüfen
Переглядів 45Місяць тому
Die Voraussetzungsprüfung bei der Mehrebenenanalyse (Linear Mixed Effects Modelle, Hierarchisch Lineare Modelle) ist etwas aufwändiger, weil man u.a. die Normalverteilungsannahme auf mehreren Ebenen prüfen muss, sowohl für die Level 1 Residuen als auch für die Level 2 Zufallseffekte, Random Intercept und Random Slopes. Dieses Tutorial zeigt Ihnen, wie Sie das in einem mit lme4 oder nlme in R ge...
CFA: Post Hoc Power Analysis
Переглядів 75Місяць тому
In this video you'll learn how to perform a post hoc power analysis for a CFA. My consulting website: www.regorz-statistik.de/blog/consulting_sem_cfa.html The tutorial is based on the semPower package in R, but its results can be used for all kinds of CFA/SEM programs, e.g. lavaan, AMOS, Mplus, Stata (but not for PLS SEM, e.g. SmartPLS). Here is the R code for this tutorial: www.regorz-statisti...
CFA: A Priori Power Analysis (Sample Size Planning)
Переглядів 222Місяць тому
This video will show you how to perform a power analysis for a CFA to plan your sample. My consulting website: www.regorz-statistik.de/blog/consulting_sem_cfa.html The tutorial is based on the semPower package in R, but its results can be used for all kinds of CFA/SEM programs, e.g. lavaan, AMOS, Mplus, Stata (but not for PLS SEM, e.g. SmartPLS). Here is the R code for this tutorial: www.regorz...
R/lavaan: Cluster Robuste Standardfehler für SEM, CFA und Pfadmodell (Mehrebenenstruktur)
Переглядів 45Місяць тому
Wenn Sie eine genestete Datenstruktur haben und mit lavaan ein SEM, eine CFA oder eine Pfadanalyse durchführen wollen, dann ist der vermutlich einfachste Weg der Einsatz von cluster robust standard errors. Damit werden die Ergebnisse der Hypothesentests korrigiert, auch wenn die Unabhängigkeitsvoraussetzung nicht gegeben ist.
R: Normality Assumption Linear Mixed Effects Model (Multilevel Model)
Переглядів 1972 місяці тому
How to check the normality assumption in a multilevel model with R (lme4 or nlme). My consulting page: www.regorz-statistik.de/en/consulting.html
Survival Analyse mit R: Kaplan-Meier und Log-Rank-Test
Переглядів 602 місяці тому
Dieses Tutorial zeigt Ihnen, wie Sie mit R einen einfache Survival-Analyse (Ereigniszeitanalyse) durchführen können.
R / lme4: ICC in a Multilevel Model
Переглядів 2772 місяці тому
How to calculate the intraclass correlation in a multilevel model * in R with the lme4 package. My consulting page: www.regorz-statistik.de/en/consulting.html *: or linear mixed effects model, or random effects model or hierarchical linear model - those names are mostly synonymous.
JASP Survival Analyse (Kaplan-Meier, Log-Rank-Test)
Переглядів 712 місяці тому
Dieses Tutorial zeigt Ihnen, wie Sie eine Survival-Analyse (Ereigniszeitanalyse) nach Kaplan und Meier mit JASP durchführen können (inkl. Signifikanztest: Log-Rank-Test)
Significance Testing in SEM: Don't Use the Z Test!
Переглядів 922 місяці тому
If you want to test a parameter in an SEM model (e.g., with R or with AMOS) in most cases you will look at the z values in the output (in AMOS: C.R.). But these test results come with serious problems. Instead, you should use a likelihood ratio test. This tutorial shows you why and how to do that. Text version: www.regorz-statistik.de/blog/be_careful_with_the_z_test.html
JASP: Survival Analysis (Kaplan-Meier & Log Rank Test)
Переглядів 3523 місяці тому
This video tutorial shows you how to run a simple survival analysis with the free statistics software JASP, including a Kaplan-Meier analysis and a log rank test. Here is the link to the article for choosing the best significance test (logrank test, Peto-Peto, Fleming-Harrington): www.econstor.eu/bitstream/10419/207860/1/10.21307_stattrans-2016-072.pdf
APA 7th: Wann Anführungszeichen setzen?
Переглядів 1913 місяці тому
Nach den Regeln der APA 7th ed. werden deutlich seltener Anführungszeichen gesetzt, als das meistens nach normalem deutschen Sprachgefühl getan wird. Dieses Tutorial stellt die wesentlichen APA-Regeln für Anführungszeichen (jenseits von wörtlichen Zitaten) vor. Hier finden Sie mein Beratungsangebot zur Formatierung nach APA 7th ed.: www.korrektur-psychologie.de/
R: Multilevel Model (lme4 package) With 3 Levels
Переглядів 4643 місяці тому
R: Multilevel Model (lme4 package) With 3 Levels
R / lavaan: Cluster Robust Standard Errors for Nested Data (SEM, CFA, Path Analysis)
Переглядів 1863 місяці тому
R / lavaan: Cluster Robust Standard Errors for Nested Data (SEM, CFA, Path Analysis)
R: Bootstrap Mehrebenenanalyse mit R (lme4 package)
Переглядів 954 місяці тому
R: Bootstrap Mehrebenenanalyse mit R (lme4 package)
AVE (Average Variance Extracted) with lavaan in R
Переглядів 1934 місяці тому
AVE (Average Variance Extracted) with lavaan in R
R: Bootstrap Multilevel Model (Mixed Effects Model)
Переглядів 2624 місяці тому
R: Bootstrap Multilevel Model (Mixed Effects Model)
Moderierte Mediation: a-priori Power (Stichprobengröße) berechnen
Переглядів 3624 місяці тому
Moderierte Mediation: a-priori Power (Stichprobengröße) berechnen
Why Post-hoc Power Doesn't Matter When Tests Aren't Significant
Переглядів 1624 місяці тому
Why Post-hoc Power Doesn't Matter When Tests Aren't Significant
PROCESS: How to Deal With Missing Values (Mediation, Moderation, Moderated Mediation)
Переглядів 1965 місяців тому
PROCESS: How to Deal With Missing Values (Mediation, Moderation, Moderated Mediation)
PROCESS fehlende Werte (Meditation, Moderation, moderierte Mediation)
Переглядів 1745 місяців тому
PROCESS fehlende Werte (Meditation, Moderation, moderierte Mediation)
R: Little's MCAR Test (Missing Completely at Random)
Переглядів 8735 місяців тому
R: Little's MCAR Test (Missing Completely at Random)
Wann kursiv schreiben nach APA 7th ed.?
Переглядів 9556 місяців тому
Wann kursiv schreiben nach APA 7th ed.?
JASP: PLS SEM (Partial Least Squares SEM)
Переглядів 2,2 тис.6 місяців тому
JASP: PLS SEM (Partial Least Squares SEM)
A Priori Power for Regression Directly in SPSS (Without G*Power!)
Переглядів 3466 місяців тому
A Priori Power for Regression Directly in SPSS (Without G*Power!)
R: Mehrebenenmodell visualisieren mit ggplot2
Переглядів 2286 місяців тому
R: Mehrebenenmodell visualisieren mit ggplot2
Hallo, ich habe eine Frage zu einer Fehlermeldung und wie ich diese beheben kann. modell.fit2 <- sem(data = STUDY_2_EFA_, model = modell.studymed.0) Fehler in if ((!is.matrix(model)) | ncol(model) != 3) stop("model argument must be a 3-column matrix") : Argument hat Länge 0 Zusätzlich: Warnmeldung: In sem.semmod(data = STUDY_2_EFA_, model = modell.studymed.0) : -141 observations removed due to missingness Das Objekt lässt sich nicht erstellen. was ist das genaue Problem? Vielen Dank!
Das lässt sich (wie leider meistens bei R Fehlermeldungen) aus dem Fehlercode alleine für mich nicht erschließen. One possible explanation is here: stackoverflow.com/questions/63775190/error-in-if-is-matrixmodel-ncolmodel-3-stopmodel-argument-must-b
Danke¡❤
graph_model(fit_cross, y = stress, x = Cexpcon, lines = chospsize, errorbars = "none") Error in factor(grid[[term]], labels = c("-1 SD", "+1 SD")) : invalid 'labels'; length 2 should be 1 or 1 In addition: Warning messages: 1: In mean.default(data[[term]], na.rm = TRUE) : argument is not numeric or logical: returning NA 2: In mean.default(data[[term]], na.rm = TRUE) : argument is not numeric or logical: returning NA
Strange. I have rerun my code and I don't get an error message.
@@RegorzStatistik OK. Thanks for checking and for this informative video.
I like the way you wrap things very effectively... salute
Thanks for the video. If all variables in the model were transformed with logarithm (Log, Log), should the assumption of linearity be met?
The assumption is met if the variables you include in your final model (transformed or not) have a linear relationsship.
Thanks for this helpful video! I was wondering: You did not do it in this video but is it necessary to center the variables and the interaction term before testing assumptions (if I center them in my final analysis)?
Yes, I would rebuild exactly the model I run with PROCESS to test the assumptions.
Hallo,ich bin so froh, dass ich Ihre Videos entdeckt habe!! Mir wird in den berechneten Daten ein Intervall ohne Null angezeigt (zwischen 0,28 und 3,4), aber in der grafischen Darstellungen gibt es Balken außerhalb des Konfidenzintervalls, die auf und unter Null liegen. Ist das für meine Korrelation relevant?
Entscheidend ist, ob die Null im Konfidenzintervall liegt oder nicht. Es ist in Ihrem Fall durchaus möglich (und bei der relativ kleinen Untergrenze des KI auch wahrscheinlich), dass es auch vereinzelte Ergebnisse unter Null gibt - entscheidend ist nur, dass dies weniger als 2,5% der Ergebnisse sind, dass die Ergebnisse also außerhalb des Konfidenzintervalls liegen. (2,5 statt 5,0, weil es ja an beiden Seiten des Konfidenzintervalls einen Bereich außerhalb gibt).
@@RegorzStatistik Vielen Dank! :)
Hallo, vielen Dank für die vielen hilfreichen Infos. Ich bin jetzt soweit gekommen, aber wie kann ich bei (vermutlich) nicht normal verteilten Werten noch eine Moderation prüfen? Wäre super, wenn Sie mir weiterhelfen könnten.
Auch eine Moderationsanalyse ist eine multiple Regression - wenn das Konfidenzintervall für die Interaktion die Null nicht mit einschließt, dann liegt eine Moderation vor. Wobei ich für eine Moderationsanalyse Model 1 von Hayes PROCESS Macro für R nutzen und dort als Zusatzparameter Bootstrapping anfordern würde. Dann bekommt man am Ende des Outputs für die Regressionsergebnisse auch noch Bootstrap-Resultate und kann so prüfen, ob das Bootstrap-KI die Null einschließt oder nicht.
Thank you for the video, if we are conducting an experiment with three experimental conditions (categorical IV in that case), is it still from this "t-test" family?
Yes. If you use the multicategorical option for the IV, then PROCESS constructs two dummy variables for the three conditions. And those dummy variables are tested as ordinary binary predictors in a multiple regression, with a t-statistic.
does TOST need normal distribution? so what if two groups of data not normal distributed and not having closely variance
Yes, TOST has the same assumptions as the parametric tests that form its basis. I haven't come across that problem in praxis, yet. One possible solution could be: Using the CI-approach (90% CI), but using bootstrapping for the CI of the group differences, since bootstrapping does not assume normality and is fairly robust against heteroscedasticity - e.g., running a linear regression with bootstrapping, and as the sole predictor using the grouping variable: ua-cam.com/video/PgVnhPTIOgQ/v-deo.html
This channel is such a valuable oasis on UA-cam, thank you very much for sharing these information for free!
Amazingo! 💯
Ist der Datensatz irgendwo zum mitrechnen verfügbar? LG
Leider nein.
Is the PROCESS Model 5 a moderated mediation then?
I think, according to the definitions by Muller, it is not a moderated mediation.
Hi Arndt, thank you very much for the generous sharing. I wonder if you could share the academic reference indicating that model fit estimation could be evaluated without the latent interaction... thanks!
You could look at Schoemann and Jorgensen (2021), full reference information see the video description. "Traditional methods of assessing model fit do not take this dependence among observed variables into account and, thus, provide incorrect estimates of model fit. To assess model fit for latent interaction model we recommend first fitting a model without the latent interaction variable, or any product-indicators, and assessing model fit on this “main effects” model." (section 1.3, last paragraph)
@RegorzStatistik I am grateful for your guidance... Thank you, brother...
Great video, thanks! What about homoscedasticity test?
I think you could use the extracted residuals as well for a homoscedasticity test (scatterplot predicted values and residuals, as in normal regression). However, for level 2 it is not trivial to get the predicted values.
Do you have any suggestions for calculating the sample size for a parallel mediation with four mediators? It seems this app only has the capacity for up to three mediators.
Unfortunately, no, I don't have any recommendations for that.
Can the results of ordinal data (data obtained from Likert scales) be processed using PROCESS analysis, especially the mediation moderation model in model 7?
Can the results of ordinal data (data obtained from Likert scales) be processed using PROCESS analysis, especially the mediation moderation model in model 7?
That depends on the variable. In PROCESS there is an option for multicategorical data for the IV and the MOD, not for MED and DV, if you have a single Likert item that you treat as ordinal (a Likert scale made up of a couple of Likert items can be seen as on an interval scale, so that is not problematic).
@@RegorzStatistik Thank you for your response. The research variables I am using are childhood trauma (X), malevolent creativity behavior (Y), aggressive behavior (M), and resilience (W). All instruments use a Likert scale. There is a question from another statistician about whether the PROCESS model, which uses a moderation-mediation (multiple regression) approach, requires interval data for analysis, while the data generated from the Likert scale is ordinal and cannot be further processed.
@@bagusadi1277 PROCESS is based on regressions and has the same requirements as multiple regression.
@@RegorzStatistik Thank you for your attention and response. I truly appreciate it. I am still quite new to research, especially at the master’s level, where more complex analytical techniques are involved. I have also read various journals and other literature regarding differing opinions on analyzing ordinal versus interval data. It seems that some statisticians are against using regression or multiple regression approaches to analyze ordinal data obtained from Likert scales, even when assumption tests (independence, linearity, homoscedasticity, multicollinearity, and normality) have been conducted. I would also like to hear your opinion regarding other studies I have encountered, which suggest an additional process of transforming ordinal data into interval data using approaches like MSI or Z-scores to enable analysis using Hayes’ PROCESS model, which is based on regression and multiple regression. What are your thoughts on this approach? To be honest, the differences and debates around data transformation and the analysis of ordinal versus interval data using Hayes’ PROCESS model have left me quite confused. Thank you so much for taking the time to share your thoughts and insights.
@@bagusadi1277 You can find my thoughts about this topic here: ua-cam.com/video/rFvSQIQ0Yis/v-deo.html In general, I would look at your are of research and the published papers there. How do they treat Likert items or Likert scales?
Super erklärt, war am verzweifeln, aber hiermit bin ich schon ein ganzes Stück weiter, vielen Dank!!!! Muss man hierbei die gleichen Assumptions beachten (Linearity, independence of errors, homoscedasticity, normality of errors und keine multicollinearity) oder unterscheidet sich das von einer normalen Regression?
Ja, eine Moderation ist im Prinzip eine ganz normale Regression mit denselben Annahmen. (Allerdings ist es relativ häufig so, dass bei einer Moderation eine gewisse Multikollinearität vorliegt - das lässt sich aber nicht grundsätzlich ändern und ist im Modell begründet.)
Vielen Dank für das Video! Super erklärt. Ich hätte noch eine Frage, welche Voraussetzungen muss man prüfen um eine Mehrebenenanalyse machen zu können? Haben sie zu dem auch noch ein Video, wie man das in R machen könnte?
Herzlichen Dank für das Video! Können Sie Literatur zur Regressionsanalyse empfehlen?
Nicht wirklich, das habe ich primär aus Vorlesungen an der Uni gelernt und weniger aus Büchern.
Vielen herzlichen Dank für das hilfreiche Video! Ich möchte für meine Abschlussarbeit gerne das Model 14 (moderierte Mediation des b-Pfades) rechnen und frage mich, ob die Ergebnisse für die Mediationshypothese (ohne Berücksichtigung des Moderators für den b-Pfad) identisch mit den Ergebnissen sein werden, wie wenn ich hierfür das Model 4 (einfach Mediationshypothese) rechnen würde? Kann ich mit Model 14 weiterhin erst einmal den totalen (c), direkten (c´) und indirekten (ab) Effekt berichten? Oder ist für diese isolierte Darstellung der Mediation (ohne Moderation) zusätzlich Model 4 zu rechnen?
Dafür würde ich zusätzlich Model 4 rechnen.
Danke für das hilfreiche Video! Für meine Bachelorarbeit möchte ich gerade ein solches Modell erstellen. Dabei will ich allerdings den Einfluss von einer beobachtbaren Variable auf drei latente Variablen beschreiben, die jeweils durch 5 Faktoren (rechtecke) beschrieben werden. Also ich schaue mir keine Korrelationen zwischen den Faktoren an, sondern nur wie sich die eine Variable jeweils auf die Faktoren auswirkt. Leider bekomm ich bei der Schätzung Werte von 1,07 (der kann ja schon nicht stimmen oder?), 0,15 und 0,58 raus. Dazu passen die ganzen Fit-Indices nicht, also sind entweder viel zu hoch oder zu tief. Das Program schlägt mir allerdings auch keine sinnvollen Verbesserungen vor. Nur das ich Fehlerterme aufeinander beziehen soll und das sich die Variablen zu den jeweiligen Faktoren voraussagen, aber da hattest du ja im Video gesagt das macht keinen Sinn. Wie kann ich da jetzt weiter vorgehen?
Das kann ich nach dieser Schilderung alleine leider nicht beurteilen.
Great! I have a question about the Index of Moderated Mediation. If we have an IV, M, Z, and DV and are looking for Model 59, the interaction of IV*Z on DV and also the interaction between M*Z on DV; what would be the Index of Moderated Mediation in this case?
I don't think there is an index of moderated mediation for PROCESS model 59.
Thanks for uploading these videos, these info are very hard to find online 🍃
vielen Dank für das hilfreiche Video! Dadurch, dass Tabellen-Nr. und Titel in zwei Zeilen stehen müssen, habe ich nun das Problem, dass das automatische Tabellenverzeichnis nicht mehr vollständig generiert wird (es wird nur die Tabellen-Nr. ohne Beschreibung angezeigt). Gibt es dafür einen Trick in Word?
Das weiß ich nicht. Haben Sie schon probiert, nach der Tabellennummer nur eine Zeilenschaltung und keine Absatzschaltung einzufügen? Vielleicht erkennt Word das dann als zusammenhängend? (Habe ich aber noch nicht ausprobiert)
@@RegorzStatistik vielen Dank! Das hat tatsächlich funktioniert :)
Vielen Dank für das hilfreiche Video! In meiner Hausarbeit zitiere ich an mehreren Stellen ein Bilderbuch. Sollte ich dabei auch die Illustratorin angeben?
Dieser konkrete Fall ist m.E. nicht geregelt, aber es ist durchaus vorgesehen, als Mitautoren auch Leute mit "Spezialized Roles" aufzuführen, 9.10 APA 7. Beispiele dort sind Herausgeber (Ed.) Und bei einem Film: (Writer) und (Director) Insofern könnte man dann m.E. auch die Illustratorin mit bei den Autoren angeben mit der Rolle in Klammern danach.
Hello Regorz, thanks for sharing this valuable insight with us. I have a question, I doing a mediation analysis for emotions (hope and fear) in a 2 (Framing: positive vs negative) x 2 (Focus: Promotion vs prevention) IVs. I’m interested in the interaction effects of these two IVs, so I created an interaction variable (Framing*Focus). Once I’m using Process macro, is it correct if I just add the new interaction variable as Y and add the two original IVs as covariates?
I think in PROCESS this would be the case for a moderated mediation, e.g., model 7 (with one of the IVs as IV and the other IV as moderator).
Hiii. Thanks for the video. Do you know if JASP has cox regression?
Currently, there is only nonparametric survival (Kaplan Meier). But they plan to add other models to the survival module as well: jasp-stats.org/2024/01/09/non-parametric-survival-analysis-in-jasp/
How can I get the confidence intervals for the ICC?
I think by including an additional parameter in the ICC function: icc(null_model, ci = T) For more information about the possible parameters of the icc function: ?icc
Vielen Dank, dieses Video hat mich im Denken weiter gebracht als zig Seminare und andere Inhalte zu dem Thema!
Würde man Kontrollvariablen bei der Prüfung der Voraussetzungen dann auch beim Nachbauen der Regressionen berücksichtigen?
Ja, es müssen genau die Modelle nachgebaut werden, die auch im PROCESS-Output erscheinen.
Hello, thank for your explanation; i got significant in mediation but when it come to moderation both are not; what should. I do?
I would report the results. It is not that uncommon that you don't get the results you expected.
@@RegorzStatistik thank you, do we need to run model 4 before doing model 59
is this robust standard error provide long-run or short-run results?
It provides results that are robust to a violation of the homoscedasticity assumption.
Hi, thank you for the tutorial. Can I ask how to report bootstrapping results? Particularly when moderation model 1 results different with bootstrapping results (p)
I would report the regression coefficient and the bootstrapped confidence interval.
I was wondering if it's possible to also quantify the heteroscedasticity if I'm interested in detecting variables that have an effect on the spread? I'm an engineer and would like to find sources of variance and control those, but not by quantifying the effect on the mean but on the variance. Thanks!
I don't know about that. If I have heteroscedaticity I simply use other standard errors (HC3, HC4) or bootstrapping.
I have a question. How do we interpret BOTH. In my case one of the moderators when taken alone is moderating (model 1) but when I use model 2 with another moderator, this moderator is not moderating while the second moderator is moderating. Yet, in the results section where it says BOTH this is significant moreover the effect size is larger than the moderation effect of the second moderator. How do I interpret this?
If BOTH is significant, then both interactions taken together explain significantly additional variance of the DV (beyond the other predictors in the model). Whereas the test for an individual interaction shows whether that interaction explains significantly additional variance of the DV beyond the other predictors including the other interaction. It is basically the same situation we know from multiple regression: You can have a significant correlation between a predictor and the criterion variable but at the same time not have a significant regression weight for that predictor in the context of a multiple regression. If one of the interactions is not significant, then that does not imply that its effect is zero; for that reason the effect size for BOTH will be larger thant the effect size for the other, significant interaction, in most cases.
@@RegorzStatistik thanks for your reply. If one interaction is not significant, and the other interaction is significant but both has a value greater than either square change for either oof the interactions can we talk about synergies between the moderators? I was trying to see when two moderators exist together (both are different HR practices) whether their moderation effect will produce a higher moderating effect or not
@@giuc100 If the R² for BOTH is smaller than the sum of the two individual R² values of the interactions, then there is some amount of overlap between the two interaction effects.
PLS SEM ,are the parameters in JASP enough to measure the Formative construct?
I am not sure that I understand your question. You can run a PLS SEM with formative constructs as shown in the last part of the video.
Great video! I have a beginner question: how can I upload my own database instead of this pisaUSA15? With which code? My database is in csv format.
I think there are many videos about how to import a csv file. I guess you will find them my searching in UA-cam with this search string: r import csv
Great!
Great! 1) What should we do when we combine longitudinal variables (measured at different time points) and variables measured only once? 2) When we have several measures of almost the same variables, can we use all of them or will it create a problem and need to choose one?
I haven't come across this situation, yet, so I don't know. Here are my guesses: ad 1: For something like that I would prefer using LCGA (latent class growth analysis or GMM (growth mixture modeling) instead of LPA. ad 2: In this case I think I would combine those measures into one value and include that in the LPA.
@@RegorzStatistik Actually, I plan to identify latent groups based on three variables measured longitudinally. However, these three measures were not assessed at the same time points. For example, x was measured at ages 11 and 14, y was measured at 103 months, 9 years, and 11 years, and z was measured at ages 8, 10, 12.5, 13.5, and 17.5. As you can see, the intervals within each variable and between variables are not equal. Do you think I can still use GMM in this situation?
@@ahmadvalikhani6290 In that case I don't think GMM will work (but I have no experience with a data situation like this). One problem for a LPA could be that z (with 5 timepoints) will dominate the analysis. If you run a LPA I think I would run at least two models: one with the full set of variables and one with only 2 or 3 ages for y to counter that threat (but that is only my intuition, not based on any literature).
@@RegorzStatistik Thanks. I will try to use cross-sectional data. Apart from that, I have kept encountering this error, but I could not find the reason or solution for it: The 'variances'/'covariances' arguments were ignored in favor of the 'models' argument. Warning in (function (data, modelName = NULL, nboot = 999, level = 0.05, : some model(s) could not be fitted! Warning in (function (data, modelName = NULL, nboot = 999, level = 0.05, : only 1-component model could be fitted. No LRT is performed! Warning: Mclust could not estimate model 2 with 5 classes. Warning: Mclust could not estimate model 6 with 2 classes. Warning: Mclust could not estimate model 6 with 3 classes. Warning: Mclust could not estimate model 6 with 4 classes. Warning: Mclust could not estimate model 6 with 5 classes. Warning: One or more analyses resulted in warnings! Examine these analyses carefully: model_2_class_5, model_3_class_5, model_6_class_2, model_6_class_3, model_6_class_4, model_6_class_5
@@ahmadvalikhani6290 I guess some models could not be estimated, e.g. convergence issues. Nothing more I can say based on this.
thanks, so easily explained everything. Much appreciate
Excellent explanation.
You doing great job for researcher
A professional teaching, thanks so much!
Hallo, wenn der Interaktionsterm nicht signifikant ist, gibt man den Index dann überhaupt noch an? Kann es überhaupt einen signifikanten Index ohne signifikanten Interkationsterm geben?
Ja, in seltenen Fällen ist das m.E. möglich. Das ist analog wie bei der Mediation, wo es auch denkbar ist, dass der indirekte Effekt signifikant ist, obwohl a-Pfad oder b-Pfad knapp nicht signifikant ist.
Hello, thank you for the tutorial! In my case, I have 6 indicators for the IV and 5 indicators for the MOD. I was considering item parceling as an option. How would I integrate the item parceling code with the code provided in the video? I don't know how or if the random repeated item parceling code using parcelAllocation would fit. Thank you again for your guidance.
I am not sure if/how random parceling can be combined with double mean centering. I think I would choose another parceling technique here.
Hallo, erstmal vielen Dank für die hilfreichen Videos. Ich arbeite gerade an meiner Masterarbeit und bin auf ein Problem gestoßen, bei dem aktuell nicht weiterkomme. Ich untersuche ein paralleles Mediationsmodell mit 2 Mediatoren. Ich habe folgende Hypothesen formuliert: H1: UV hängt positiv mit der AV zusammen. H2: M1 vermittelt die Beziehung zwischen UV und AV. H3: M2 vermittelt die Beziehung zwischen UV und AV. Meine Ergebnisse zeigen signifikante indirekte Effekte über beide Mediatoren. Weiterhin ist der totale Effekt signifikant, der direkte Effekt ist jedoch nicht signifikant. Nun weiß ich nicht genau, was das in Bezug auf meine Hypothese 1 bedeutet. Betrachte ich den totalen Effekt, würde sich H1 bestätigen. Betrachte ich den direkten Effekt, würde sich H1 nicht bestätigen. Wie wäre denn hier die korrekte Vorgehensweise? Können Sie mir möglicherweise Literatur diesbezüglich empfehlen. Vielen Dank im Voraus :)
Nach meinem Verständnis betrifft die H1 den totalen Effekt und nicht den direkten. (Der nicht signifikante direkte Effekt besagt ja nur, dass unter Kontrolle der beiden Mediatoren kein restlicher Effekt von UV auf AV verbleibt - aber das ist ja nicht die Frage der H1).
vielen Dank für die Rückmeldung. Ist meine H1 aber dann nicht überflüssig, da die Effekte komplett indirekt verlaufen? Oder geht es darum zunächst zu prüfen, ob überhaupt eine Beziehung zwischen UV und AV existiert. Nach Baron und Kenny (1986) ist der totale Effekt ja eine Voraussetzung für eine Mediation, wobei es ja auch Literatur gibt, die die Auffassung vertritt, dass der totale Effekt keine Voraussetzung ist. Vielleicht könnten Sie mir hierzu bitte nochmals kurz Rückmeldung geben. Herzlichen Dank :)
@@And17P Ob Ihre H1 überflüssig ist oder nicht, das ist keine statistische sondern eine theoretische Frage. Möchten Sie prüfen, ob es überhaupt eine Beziehung zwischen UV und AV gibt? Dann ist die Hypothese sinnvoll. Oder interessiert es Sie nur, ob es einen indirekten Effekt gibt? Dann brauchen Sie diese Hypothese nicht, und die neuere Literatur vertritt, wie Sie schreiben, die Auffassung, dass ein totaler Effekt für eine Mediation nicht unbedingt nötig ist.
Ich schätze Ihre Videos sehr. Ich würde mich in der Tat auch sehr freuen, wenn Sie noch mal ein ganzes Tutorial zu semPower machen :)
Das ist in Vorbereitung, wird aber noch einige Zeit dauern.