Rebound speed vs Suspension performance (MTB Ep.15)

Поділитися
Вставка
  • Опубліковано 27 сер 2024

КОМЕНТАРІ • 229

  • @mythbuster204
    @mythbuster204 4 роки тому +4

    Wow first time I see someone in the biking community who is not talking gibberish from a subjective perspective but actually understands the physics, nice work :)

    • @andrextr
      @andrextr  4 роки тому +1

      Matko Pečanić thank you my friend!

  • @andrextr
    @andrextr  7 років тому +60

    Thank you all for the HUGE positive feedback, it means a lot for me! Bye :)

    • @buffalotheory504
      @buffalotheory504 7 років тому +4

      Hi +andrextr I learnt more about MTB suspension from your channel and on pinkbike than anywhere else! Could you explain how I can find the 3 usable rebound damping settings on my RS Pike fork? There is a video on the rear but the front is the same process or different?

    • @afnanabdusamed3100
      @afnanabdusamed3100 6 років тому

      can u suggest any good books that details about suspension.

  • @aaron00hurst
    @aaron00hurst 5 років тому +10

    I learned more from this video that i did from some of my $1000, 4 month long college math classes required for my math minor. You sir are a hero.

    • @andrextr
      @andrextr  5 років тому +1

      :D eheh thanks

  • @MtbEnduroChile
    @MtbEnduroChile 7 років тому +18

    You are right buddy! One of your very best videos! Cheers from Chile!!

  • @Raumance
    @Raumance 7 років тому +21

    Andre you are the fucking champ.

  • @az220584
    @az220584 2 роки тому

    Your explanation is truly amazing and easy to understand..i was laughed myself when you the quote statement "What the Hell is happening"...Tks

  • @northeastmtb1575
    @northeastmtb1575 7 років тому +11

    Awesome video, I spent almost 2 years tuning my rockshox rear shock, and eventually ended up on the second lowest rebound setting (with very high air pressure), now I know why!

  • @goncarrasco
    @goncarrasco 7 років тому +4

    Tuning shocks and forks nowadays can be complicated. Your video makes things very understandable. Very good work Andre!

    • @andrextr
      @andrextr  7 років тому

      +Gonzalo Carrasco thanks Gonzalo :)

  • @EeroSoralahti
    @EeroSoralahti 7 років тому +13

    Truly excellent video! Topic, animation, explanation... everything!
    How come no bike magazine or review site has not hijacked you yet, even as a freelancer? Your videos put the qualitative, vague and descriptive comparisons the traditional bike media produces to a shame... Well done mate, and keep it up!

    • @andrextr
      @andrextr  7 років тому +5

      Thank you for your very nice words!! Since I'm unemployed rigth now I'm fully available for that job if any mag is interested to hijack me eheh :D

  •  2 роки тому +1

    Great analysis and job.
    Far better than the vague tutorials and suspension tuning tips from most of the "specialized" biking media.
    Thanks a lot.

  • @bikekona06
    @bikekona06 7 років тому +8

    Your videos = the best videos about suspension !

    • @andrextr
      @andrextr  7 років тому

      Thank you !!! :D

  • @akinnon2000
    @akinnon2000 2 роки тому

    Even better than what io was looking for thanks ! Very well done.

  • @davewalsh8278
    @davewalsh8278 7 років тому +3

    a complicated subject made simple. Well done Andre

  • @torabora851
    @torabora851 7 років тому +4

    Awesome! Very clear idea how to think about rebound. Now I understood what highspeed recovery of my DBCouil needs for. Thank you!

  • @arniegv
    @arniegv 7 років тому +2

    Very good and simplified graphics explanation...You're the best Andre! I love your channel! Thank you so much for helping us out.

    • @andrextr
      @andrextr  7 років тому

      Thank for your words Arnie :)

  • @civilstructural
    @civilstructural 7 років тому +1

    this is way better explanation than all of your videos, with proper physics theory and application, the type of explanation I'm looking from you videos.

    • @andrextr
      @andrextr  7 років тому +4

      Thank you. I also agree with you, but this one took me lots of hours to prepare.... but it was worth it :) Bye

  • @carlosgil697
    @carlosgil697 7 років тому +2

    What a masterclass!!
    Great video and so interesting and useful concepts.

    • @andrextr
      @andrextr  7 років тому

      Thank you (obrigado) Carlos!

  • @basiek1410
    @basiek1410 2 роки тому

    super explained, I was looking for it for so long, sorry for my English :)

  • @jackschreuder5657
    @jackschreuder5657 7 років тому +3

    Another fantastic video which again caused me to tune my suspension again every time i watch one of these videoos the next time i go riding my bike feels better XD

  • @zinkws
    @zinkws 7 років тому +9

    Nice video. Great explanation. Good work.

  • @federicotaddei4197
    @federicotaddei4197 3 роки тому

    Absolutely clear, an example how to show suspension settings ! Thank you very much for your excellent work!

  • @dakshalpatel3858
    @dakshalpatel3858 6 років тому

    Most practical way to teach Suspension(Vibration) topics of Physics..Cheers!!

  • @maxlaguda4232
    @maxlaguda4232 3 роки тому

    Ahhhhhhh, now I know why suspension companies make a low speed and high speed rebound adjustment, thanks, keep it up

  • @MTNcorps
    @MTNcorps 7 років тому

    This is an excellent fundamental video on dampening and your graphics were excellent. Well done sir.

  • @MarcoAurelio-sh6bp
    @MarcoAurelio-sh6bp 6 років тому

    Eslovaco, não consigo parar de rir! Você entende bastante! Dá uma força pro Brasil!

    • @andrextr
      @andrextr  6 років тому

      Foi muito boa essa do eslovaco kkkk

    • @MarcoAurelio-sh6bp
      @MarcoAurelio-sh6bp 6 років тому

      andrextr Melhor de tudo foi a surpresa inimaginável que você trouxe dizendo ser Português. O Henrique é muito bem cotado por aqui, mas você pelo que vi é além de muito conhecimento técnico atencioso. Foi um prazer. Saúde e sucesso pra você! Abraço.

  • @SnakeC666
    @SnakeC666 3 роки тому

    Excellent series, so much great information!

  • @patrickfiore7067
    @patrickfiore7067 4 роки тому

    I’m a math teacher (and mtb shredder), and I really enjoyed the thorough breakdown of the natural frequencies! I love for a solid explanation, which is why I teach lol, and this vid nailed a topic that is so elusive. Great job my friend! Home run!!!

    • @andrextr
      @andrextr  4 роки тому

      Thank you Patrick !! :)

  • @tomalbert3299
    @tomalbert3299 6 років тому

    I watched all your episodes. My understanding of suspension and kinematics increased a lot! Would be great to see new videos in future.

    • @andrextr
      @andrextr  6 років тому

      Thank you Tom! I already done another video to be published very soon with VitalMTB ;) But yes, unfortunately I don't have much free time now for doing videos.

  • @phfreire95
    @phfreire95 7 років тому +2

    Keep up the good work man, that was great.

  • @Ordinarysortaguy
    @Ordinarysortaguy 6 років тому +1

    Amazing video, my shock has rapid recovery so to know this is a game changer!

  • @santiagorueda5200
    @santiagorueda5200 6 років тому

    Nice and easy explanation, fantastic Job!!

    • @andrextr
      @andrextr  6 років тому

      +santiago rueda thanks :)

  • @joakinhox00
    @joakinhox00 7 років тому +2

    Amazing men!! Best video I've seen in a long time!
    Already shared!!

  • @robinlamontagne7026
    @robinlamontagne7026 7 років тому +1

    Really good explanations thank you for all the good work you are putting in your videos!

  • @RGCastro7
    @RGCastro7 7 років тому

    Great job, Andrextr! Thank you for sharing this with us.

  • @kikoyouth
    @kikoyouth 4 роки тому

    Excelente trabalho André!
    Explicações muito claras, principalmente tendo em conta os detalhes de teoria de vibrações e ruído. Well done :)

    • @andrextr
      @andrextr  4 роки тому

      Obrigado! Abraço :)

  • @joubercorlaitic.nascimento9706
    @joubercorlaitic.nascimento9706 5 років тому

    I dont have words for you man!!!!! Great video, thanks

  • @jc291288
    @jc291288 7 років тому

    great, so clear like every video you made. I will love RS's rapid recovery, I was in doubt but after this video I totally diceded to try it.

    • @andrextr
      @andrextr  7 років тому

      Thanks again Jean Carlo for your support :) Fox also have a "Rapid recovery" but their marketing department didn't remember to call the high-speed rebound in such a fancy way (which sells) :D

  • @edmo1982
    @edmo1982 6 років тому

    Man! Stoked by your videos. Congratulations. great and correct explanation

  • @omarfernandez6943
    @omarfernandez6943 7 років тому +1

    Fantastico, you're the best!!!!
    I appreciate your work
    Regards From CHILE!!

    • @andrextr
      @andrextr  7 років тому +1

      Muchas gracias!! Un saludo de Portugal

  • @jmkulikowski
    @jmkulikowski 7 років тому +1

    Excellent, as always!

  • @benjamimnande442
    @benjamimnande442 2 роки тому +1

    Excelente explicação!

  • @Lohman1464
    @Lohman1464 7 років тому +1

    Great job! really well explained!

  • @ashbridgeprojects6916
    @ashbridgeprojects6916 6 років тому

    Excellent video, I've been educated.

  • @alissonkrynski6482
    @alissonkrynski6482 5 років тому

    Amazing! Excellent video! Thank you!

  • @Bigsbeee
    @Bigsbeee 5 років тому

    Enjoyed very much .

  • @juscelinocastro
    @juscelinocastro 7 років тому

    Aproveito para parabenizar o belo trabalho de seus vídeos. Fantásticos!! Excelentes!

  • @lukefarmer5391
    @lukefarmer5391 2 роки тому

    excellent video. I subscribed because it was so good.

  • @osvaldovegacasanova3559
    @osvaldovegacasanova3559 7 років тому +1

    awesome work!

  • @Seldoff
    @Seldoff 3 роки тому

    This is gold!

  • @ionitacosmin6190
    @ionitacosmin6190 4 роки тому +1

    The same explanation for compression. Compression speed vs suspension performance!

  • @CaptainCrunch99
    @CaptainCrunch99 6 років тому

    Most excellent !

  • @gia_minh_
    @gia_minh_ 3 роки тому

    really helpful! thank you!

  • @TheYunok47
    @TheYunok47 7 років тому +2

    Great videos bro!

  • @aynalineo
    @aynalineo 6 років тому

    That was great man! Waiting for the nex
    t videos

  • @CrissGoes
    @CrissGoes 7 років тому +1

    What a great video.

  • @ryanmartin6878
    @ryanmartin6878 3 роки тому

    Great video!

  • @andrearicci4707
    @andrearicci4707 7 років тому +2

    Great Andre

  • @R1pp3d
    @R1pp3d 7 років тому

    Awesome video :) It would be cool if you could make a video about forks sometime, especially regarding how to balance compression damping and spring rate (and spring curve too as we can adjust it easily in air forks). I have a pretty good understanding of how the damper works but actually applying it and getting a good setup is more difficult

  • @moviepassion7995
    @moviepassion7995 7 років тому +23

    Really interesting and really well explained!! Where do you have all this knowledge from?

    • @Raumance
      @Raumance 7 років тому +9

      He takes the torn tires of the local children, melts them and then he drinks it.

    • @andrextr
      @andrextr  7 років тому +26

      Eheh. This is a hobby, I always liked suspensions since a little kid, so I've been bulding this info along many years :) My science background helps on this :)

    • @moviepassion7995
      @moviepassion7995 7 років тому +1

      Eheh. That is a nice hobby :D

  • @vigneshkannak2133
    @vigneshkannak2133 Рік тому

    This is the best video I have seen related to suspension tuning. Super clear. Can you please share the algodoo file?

  • @mayconcoelho7415
    @mayconcoelho7415 6 років тому

    Very nice!

  • @Josep_Barbera_Garcia
    @Josep_Barbera_Garcia 7 років тому +1

    Good job.

  • @2prycey
    @2prycey 7 років тому

    Loving your videos, it would be great if you did a video on the science behind different wheel sizes and the effect on suspension?

    • @andrextr
      @andrextr  7 років тому +1

      Thanks! I have this super scientific picture (eheheh): ep1.pinkbike.org/p5pb14377433/p5pb14377433.jpg
      I never dig into the wheel topic, but I would say that bigger wheels decrease a bit the suspension shaft velocities and bump frequencies (making the bumps smoother, as shown in the picture). Bigger wheels also increase the center of mass and add rotational mass. More importantly, if you do shuttles on a van, it's harder to put the bike inside (eheh). So it's always a trade off. Bye

  • @cscsw
    @cscsw 6 років тому

    high speed rebound damping means shock extends after a big hit. The shock is compressed deeply and then rebound. It isn't directly related to "bump frequency"

  • @matthewshultz8762
    @matthewshultz8762 7 років тому

    Can you do a video on how to set up a fork for critical rebound similar to ep. 5 with the shock for those of us with hardtails? These videos are awesome and really help me understand some of the finer nuances of suspension workings.

    • @andrextr
      @andrextr  7 років тому +1

      Thank you. This is a very requested question but unfortunately I don't have any good "scientific" method for the fork rebound. On a full sus bike my advice is to setup shock first and then tune the fork in a way that feels balanced with the rear (or even a bit faster). For an hardtail you don't have that reference point. My advice is to tune it by "feeling" (i hate feelings :D), in such a way that the fork won't behave as a pogo stick or too slow. The good news is that you have more room to error with the fork rebound, since contrary to the shock, a quite faster setup will not send you over the bars on sketchy trail or jump.

  • @wigdig
    @wigdig 7 років тому +1

    really enjoying your videos, thank you for making them. do you think you might look at fork setup in more detail? I've always wondered how volume spacers impact forks like the pike

    • @andrextr
      @andrextr  7 років тому +2

      +wigdig Check my video about air spring shocks, it talks about volume spacers. Although it's about shocks it can be applied to forks since the air spring has the same principle. The volume spacers affect the second half of the travel, making it more progressive and firmer at the end of the travel. Good to absorb bigger impacts. If you experience many harsh bottom outs use more spacers. Otherwise it's OK as it is (the idea is always to use full travel but without many harsh bottom outs). Bye

  • @c0rky0001
    @c0rky0001 3 роки тому

    Epic!

  • @rodrigozepeda3525
    @rodrigozepeda3525 5 років тому

    Te la rifas carnal, muy buenos videos !! sigue asi =)

  • @mithrandirtheistari
    @mithrandirtheistari 7 років тому +1

    Hey Andre, awesome stuff on your videos! So let me ask something, if I understood correctly, if your shock has separate LSR and HSR knobs, the HSR should be set FASTER (less damping) than the LSR knob?

    • @andrextr
      @andrextr  7 років тому

      Hi. Yes, low speed rebound needs to be slower than the high-speed (but this does not necessarily corresponds to the number of clicks of the settings!!!). And don't use extreme settings because high and low-speed rebound work together (for instance, in a high-speed rebound event, although the oil flows in the high-speed circuit, some of the oil also flows through the low circuit). If you have a shock with both settings I would recommend to watch this video at minute 9:00 ( ua-cam.com/video/Yjql1kExvCE/v-deo.html ). Probably this is not the best way to tune it, but I believe it's a good starting point, at lest it's a balanced way to do it, without going into the extreme settings. If you want to try it tell me if it worked well for you.

  • @DaStuntChannel
    @DaStuntChannel 3 роки тому +1

    The best suspension would have a slow rebound on the amplified section and fast rebound on the absorption section

  • @pintospirits
    @pintospirits 6 років тому

    I think high speed rebound is recovery from big impacts, so high shaft speeds rather than high frequency. High frequency bumps would result in lower shaft speeds so that is lsc and lsr

  • @DoubleClutchProductions
    @DoubleClutchProductions 3 роки тому +1

    What software are you using to simulate these, really like your info thank you.

    • @andrextr
      @andrextr  3 роки тому

      Algodoo (free)… or working model 2D

  • @MW-ud8zp
    @MW-ud8zp 7 років тому +1

    Did you learn about this by yourself or in college? Really informative video. Good job. Also: are the physics simulated in Phun?

    • @andrextr
      @andrextr  7 років тому

      Maciek Waligorski By myself and using Google eheh ;) my background is biology related. yes it was on phun. not great software but it works ok with simple stuff

  • @madoxx1911
    @madoxx1911 7 років тому +1

    Mechanical engineer here with a question: I like your explanation of rebound speed and it's effect on suspension performance, but I wonder how applicable the conclusions are to a real fork/shock because I'm not sure if your simulation models include compression damping as well. Disregard this comment if they do, but when you programmed your suspension simulation did you include a separate force vector in the direction of shock extension (F_y = -cv where k is the coefficient of compression damping) as well? Most modern forks and shocks allow you adjust both compression and extension (rebound) damping to independent values and I'm curious to see an animation of how these two inter-related parameters affect overall suspension performance.
    If you redo the simulation with compression and rebound damping having independent values the sum of forces on the suspended mass would be:
    m*a = -c*v - k*x where c is c_comp when x dx is negative and c_rebound when x dx is positive.

    • @andrextr
      @andrextr  7 років тому +1

      Hi Alex. Thank you for your question. I'm not an engineer, I'm a biochemist eheh. Anyway, this simulator is a free and cheap one and it doesn't allow much tweaking, it only allows changing damping ratio. Yes it does have compression. In real world the damping of a shock is 70% for rebound and 30% for compression. So, the rebound has a more important role in the overall damping. The animations were mostly a visual aid to explain the transmissibility concept. The more damping (either compression or rebound) the more stable the ride would be over low-speed frequency bumps but the harsher will be over high-speed bumps. It would be nice to have a better simulator to simulate different reb&comp damping for the different shaft velocity (to simulate high and low speeds comp & reb. damping), but this is the best I can do :) Bye

  • @janezpracek8256
    @janezpracek8256 7 років тому +2

    Did you placed riders mass on the saddle? When riding rides mass is usually applied mostly through the pedals... Otherwise great video...

    • @andrextr
      @andrextr  7 років тому +2

      I like to ride seated with open legs :D

  • @torabora851
    @torabora851 7 років тому +7

    Could you explain, how high and low speed compression affect all this stuff.

    • @andrextr
      @andrextr  7 років тому +2

      +Maxim Stepanov The compression affects this in the same way as rebound. The more compression you have the more stable is the ride (less amplification) but more harsh it became (less bump isolation). This is why you also got 2 compression circuits. Thus you can run higher compression damping at lower frequencies (LSC), while the high-speed compression circuit automatically reduces the amount of compression damping at high frequencies allowing better bump isolation. So, it's the same as rebound. Indeed both compression and rebound act together. The difference between compression and rebound is that on a MTB suspension (and in other motor vehicles) the amount of damping from rebound is typically 3 or 4 times higher than the amount of compression damping. Bye

    • @torabora851
      @torabora851 7 років тому

      'More compression' you mean softer or harder? It seems that more compression(harder) means that you get more energy from bump and get more amplification?

    • @andrextr
      @andrextr  7 років тому +2

      Maxim Stepanov Shit I deleted my answer by mistake. Higher compression damping means that shock won't compress so much (harder). So on lower frequencies where the suspension amplifies the actual size of the bumps (so it moves a lot up and down), more compression damping in this case will limit the amount of shock movement reducing amplification. However, as you said on square edge bumps it also reduces isolation, so it won't absorbs so much the bump (I understood what you mean, but you don't have amplification on high speed bump, only isolation). With a low and high speed compression circuits, you can have more compression on lower frequencies (LSC) reducing the excessive wallowing of the suspension (stability) and at the same time the HSC circuit allows more oil to flow at square bumps, reducing the amount of damping, and improving bump absorbtion (isolation). bye

    • @101picofarad
      @101picofarad 7 років тому +4

      1) Thanks for this videos! All russian velomaniacs see it.
      2) It would be very interrest see same video about LSC/HSC (many ammo have this settings) and about complex influence both rebound and compression settings at typical terrain.
      3) I read that some shocks like x-fusion vector coil HLR have no separate HSR adjustment, but HSR coupled with LSR and change automatically (!).
      4) New shocks have climb/trail/descend ideology, can you explain this approach vs separate HSC/LSC Ajustments?

  • @hermessamirherrera1887
    @hermessamirherrera1887 5 років тому

    Great videos Andre! Is it possible to make a video to compare/understand the variations of the different geometries and travel distances (DH, enduro, trail and XC) on the same difficult track? And also to understand how the suspension travel potencializes the human bump absortion. For many people seem obvous, more travel equals better descent, but I have heard that "the biggest suspension travel is in your arms and legs" so, how does this apply overall?
    Best regards and thank you for your clever videos!

  • @Pogost1ck
    @Pogost1ck 7 років тому +1

    What software did you use for the animation/simulation? Does it output usable data?

    • @andrextr
      @andrextr  7 років тому +1

      It's the Algodoo. It's not a great tool, but it's free and it works OK on simple stuff. Yes you can output graphs to excel. It's good for physic classes :)

  • @alessandroamendola5140
    @alessandroamendola5140 7 років тому

    Great work man! Which software are you using?

    • @andrextr
      @andrextr  7 років тому

      +Alessandro Dando For the simulations I used algodoo. It's a free tool, it's not great but it works OK with simpler simulations like the ones of the video :)

  • @heinrichhirsch4242
    @heinrichhirsch4242 3 роки тому

    Realy nice Video ans good explained. What have you used for Simulation?

    • @andrextr
      @andrextr  3 роки тому

      A free software called algodoo 😆

  • @michaelracine3745
    @michaelracine3745 7 років тому

    Andre, you usually have answers before I think of the question but here's one I'm wondering about. On rocker equipped bikes while the bike is unweighted the seat stay contacts the rear of the rocker at close to 0 degrees. As weight is added the stay pushes the rocker to an increasingly obtuse angle which seems to decrease the mechanical advantage of the stay and wheel, which isn't what's needed. Is this to counter the rapid ramp up of the air shock? But how do bikes with a horizontal shock deal with the progressiveness? Bikes use coil and air shocks with the same set up also so what's up , O Great One.

    • @andrextr
      @andrextr  7 років тому

      The progressivity can't be seen just by the position of the rocker. For instance the shock position also affects the leverage ratio (see Ep.4 ua-cam.com/video/78DD82fx4M8/v-deo.html ). For instance, the Canyon Strive and Radon Swoop have an horizontal rocker, however, Strive is much more progressive than Radon. This also applies to vertical rockers, for instance, NOX EDF or DHR are very progressive while Scott Genius LT is slightly regressive. Not sure if this answers your question :)

  • @winters3
    @winters3 4 роки тому +1

    perfect :)

  • @broyerthibault9074
    @broyerthibault9074 6 років тому

    I'm not sure that high frequencies bumps are relative to highspeed rebound, because you never go faster through a rock garden (deep in the stroke) than through braking bumps ...

  • @RoboticusMusic
    @RoboticusMusic 7 років тому +1

    What do you think of the DVO Emerald and RockShox R2C rear? Are they the best suspension? I'm asking for a downhill ebike build. I won't be pedaling much so I just need the best possible suspension for this application.

  • @Andr3ground
    @Andr3ground 7 років тому +1

    André!! meu chará, muito bacana os videos! Que software vc usa para todas essas simulações!

    • @andrextr
      @andrextr  7 років тому +2

      +André Rios Usei o algodoo. Não é muito bom, mas funciona para coisas simples. Valeu!

  • @izaq_douraku
    @izaq_douraku 7 років тому

    really interesting and awesome explained... 😂
    did you make bike simulations in PHUN?
    im sorry BAD English...

    • @andrextr
      @andrextr  7 років тому +1

      Yes it was in Algodoo. It's not very good, but for simple simulations like those on the video it works OK.

    • @izaq_douraku
      @izaq_douraku 7 років тому +1

      andrextr thanks! i would recommend your good video to friends! bye🤗

  • @SGMTB
    @SGMTB 7 років тому +1

    Great explanation, thank you!
    Unrelated, but something I'm curious about: Is a more progressive air spring superior to more damping of high speed compression? Because HSC is meant to slow the shock down in essence when it encounters high speed hits. However, wouldn't it be better to simply pop in another volume spacer instead? Or are these achieving the same thing, simply in different increments?

    • @andrextr
      @andrextr  7 років тому +1

      Thank you! Yes, in my opinion is better to add a volume spacer and use the low as possible high-speed compression (HSC). Because HSC does not only kicks in on big impacts, it also kicks-in on high-frequency small bumps like going fast over rocks, pot holes and roots. So, HSC is nice to avoid harsh bottom-outs but it also produces harshness over those small bumps. With a volume spacer you increase the final progressivity without reducing the small-bump compliance. (I discussed this topic on Ep.7 video). Bye

    • @SGMTB
      @SGMTB 7 років тому

      Awesome thank you!

  • @jozefvladovic7949
    @jozefvladovic7949 6 років тому

    what i dont understand are the spacers for what are they? with spacers you have the same pressure just in the smaller place that means lower shock travel and stiffer damping...with adding air you have the full travel and stiffness can be adjust with pressure so i dont understand why some1 should put this Things inside...it gives me importance just if you are not allowed to pump more psi into the schock and you Need more pressure couse the shock still bottoming out or it gives too weakly Feedback but there is the highest Limit of psi (depends on model) for example 150 psi with spacers has more pressure in the fork then 150 psi without spacers couse the damping is much more agressive couse the air is in smaller tube that means 150 is like 170 so you would be over the warranty Limit...more travel is more "time" to absorb the energy of Impact fork with spacers sounds for me like a full blowed balloon from which you still taking 1 breath then adding 1 blow inside so it is question of time when it makes a boom
    Zobraziť menej

    • @andrextr
      @andrextr  6 років тому

      +Jozef Vladovic Hi. I covered this topic in more detail on the air springs episode. The spacers don't reduce travel. They just affect the final progressivity of the air spring. More spacers will make the final travel more firm, reducing bottom outs. They do this without affecting the feeling of the first half of the travel. They also don't mess significantly with SAG so you can run a very similar initial pressure. Cheers

  • @rea50
    @rea50 6 років тому

    Subbed

  • @adamdonaldson7409
    @adamdonaldson7409 7 років тому

    Great Video Andre! Question, does the RockShox Pike and Monarch Debonair come with High-speed rebound damping, and for a 60kg rider what would be a good Low-speed damping for the fork? Thanks

    • @andrextr
      @andrextr  7 років тому +1

      Yes, rockshox called it "Rapid Recovery". It's just a fancy name for high-speed rebound (marketing). Pike and Monarch have the "rapid recovery" thing. In other products they called it dual flow (2 rebound circuits). Regarding the low-speed adjustment, it depends on your style of riding and the trails you ride. If you like the front a bit more firmer, or if you do flowly trails or park, then add some low-speed comp (LSC). If you like the fork more soft and spongy or if you ride a lot bumpy and rocky trails use less LSC. The more LSC the more firmer and stable the fork would be, with less diving, but if you put too much you start to get some harshness. Bye

  • @Oliveiraa1606
    @Oliveiraa1606 7 років тому +1

    Muito bom

  • @gopronomad4381
    @gopronomad4381 3 роки тому

    So softer spring means higher rebound (did I understand it right)

  • @diego81990
    @diego81990 6 років тому

    Hi, I bought a kona hei hei dl race from 2016. Im finding Im quite slower than my normal hardtail. Kind of feels like Im losing a lot of force through the back shock.
    I mostly drive XC style routes. Do you have any tips?
    Im currently weighing 75kg. Have the sag’s set at 20% in front and 25% in the rear.

  • @hanochefra
    @hanochefra 7 років тому

    Is it possible you theirs a mistake in the plots at t = 14:20? When zeta=1 the gain should be 0.5 (-6db) in a second order system at the natural frequency...

    • @andrextr
      @andrextr  7 років тому

      +hanochefra Hi. I took this graph from other site (link on the image). From what I've seem in other graphs the transmissibility is 1,5 at Fn when zeta is around 0.5. My background is biology, so although I can understand the concepts and their applications I don't know the more advanced math formulas to answer your question. :)

  • @playlunia1
    @playlunia1 2 роки тому

    Excellent video! I'm a mechanical engineer. Can you share what software do you use to create these simulations?

    • @andrextr
      @andrextr  2 роки тому

      It was algoodoo… its a free tool… you also have working model

  • @artemnastovjak2638
    @artemnastovjak2638 7 років тому

    9:16 K = 4500 Kgm (~250lbs spring)

  • @nicoofner85
    @nicoofner85 7 років тому +1

    Whats about a rockshox vivid coil?
    There is a lowspeed compression dial, but not highspeed dial so the highspeed compression is adjusted via shimstack?
    and there is a beginning stroke rebound and a ending stroke rebound, but thats not the same as high and low speed right?
    There is also rapid recovery. But how should i set up the rebound? Does that mean that I should set up both dials a bit faster than the critical point and let the rapid recovery controll the high frequency bumps?
    I don't know if i am right with this but hopefully you can tell me. You probably know the "Marsh Test"(if not watch some of the newer santa cruz syndicate vids), where Greg Minnaars mechanic and the fox guys just slam the rear wheel to the ground. It seems, that they also measure how long the bike rolls along after the impact. Can you explain how they make the bike really stick to the ground and what adjustments they change? I think in case of the vivid this would be the beginning stroke rebound right?
    I hope you like this comment and can answer my questions! Thanks a lot, I love the channel and i hope, that i understand what is going on there!

    • @nicoofner85
      @nicoofner85 7 років тому

      Sorry about my english, I'm not a native speaker

    • @andrextr
      @andrextr  7 років тому

      Hi. Yes the high-speed compression on the vivid is controlled internally on the main piston via shim-stacks. The begging and ending rebound are the same as the low and high-speed rebound. This is a nomenclature used by Rockshox to simplify but technically it's not fully correct since you can have high-speed rebound events on the beginning of the travel (for instance when you hit small bumps, rocks and roots on a fast trail). I don't know that "marsh test" do you have the link of the video? But from your description it looks like the drop-test (ua-cam.com/video/PQDCUa-KIyw/v-deo.html), or is it different? Regarding your question on how to adjust both rebound knobs, my advice is to watch episode 5 (if you didn't yet) and in particular watch episode 7 after min 9:00 (ua-cam.com/video/Yjql1kExvCE/v-deo.html). I hope that this can be helpful. Bye

    • @nicoofner85
      @nicoofner85 7 років тому

      andrextr Hi. I saw your drop test video, but i didn't think about it. It is pretty much the same but they also slam the wheel to the ground in different directions. I think this is to see how the suspension reacts to sideways impacts e.g. bucking. I saw all your videos, but i don't understand the beginning and ending stroke rebound. As you said highspeed can be rebounding after the landing pf a big jump or roots at higher speeds. I try to find the test in a video. Thanks!

    • @nicoofner85
      @nicoofner85 7 років тому

      andrextr You can see it at the episode 2 at cairns worldcup at 9 minutes. Channel: The Syndicate

    • @nicoofner85
      @nicoofner85 7 років тому

      andrextr So it would be the beginning stroke rebound right? So the Lowspeed compression doesn't affect this?

  • @andreasbmx100
    @andreasbmx100 7 років тому

    really nice video , what's your opinion about custom tuned suspension ,I am talking for mtb .

    • @andrextr
      @andrextr  7 років тому +1

      I don't have a strong opinion on that but I think it depends on the objective of the tuning. But I would say that most of the time people don't need a custom tune, they just need to adjust the shock properly... There are some cases were the shock adjustments range are not enough for a specific rider, in that case it might be needed a re-valving on the internal tune. Or for instance, there are some basic shock which lack some adjustments, like high-speed compression and so on, so you need to re-valve in that case if you are aiming for a specific objective. Shocks like CCDB or Fox X2 already have a quite good adjust ability range with 4-way adjustments, they can fit most types of bikes and riding styles out of the box, so in this case a re-valving is not needed on most cases. Bye

  • @maxschubert3940
    @maxschubert3940 6 років тому +1

    +andrextr
    Hi Andre,
    I really like your videos, they are well explained and interesting. I have a question/suggestion regarding the topic of rebound however.
    In your video you assume that both the weight of the bike and of the rider are sprung mass, which makes the use of critical damping very important. In reality however the rider is not static and can absorb impacts/vibrations etc. aswell. In this way a lot of other people recommend much faster rebound speeds because the rider already adds to the rebound by using his arms and legs. (for instance Vorsprung suspension: ua-cam.com/video/nVZnyrnqzcQ/v-deo.htmlm10s).
    What do you think about this? Could you simulate the damping applied by the rider to the system by adding a secondary spring/damper setup above the sprung mass (which has to be lowered to the bikes weight) to your simulation at 13:05 in your video? I would really like to see the effects of this. Realistically the damping of the rider would be quite slow as a rider cannot follow high speed oscilations with his arms and legs that well.

  • @berfava
    @berfava Рік тому

    So if the natural frequency of full suspension bike is 2Hz it means I'm unfortunate for growing accustomed with a 120rpm (=2Hz) pedalling cadence, unless I stick to the lowest possible rebound speed (or break the bank with the expensive shocks)

    • @andrextr
      @andrextr  Рік тому

      For each crank revolution you have 2 power peaks moments for each leg (when crank arms are horizontal). So, 60rpm cadence = 2Hz