A Functional Equation | Math Olympiads

Поділитися
Вставка
  • Опубліковано 14 лис 2024

КОМЕНТАРІ • 42

  • @TecknoVicking
    @TecknoVicking Рік тому +2

    f(4) = f(2)/2. Done.
    With this you found f(2) or f(4). Then f(8) = f(2)/4 = f(4)/2.
    So we have 3f(4) = 6. Then f(8) = 1.
    Nice one.

  • @chahn987
    @chahn987 Рік тому +2

    Solved in a similar way to the second method. Set y = 1/x so it forces the first part to be f(1) which basically leads to the same equation in second method, but I like setting x = 1 better. It seems a bit more elegant

  • @thietsniper3699
    @thietsniper3699 Рік тому +4

    I looked at the beginning of the article and saw that there was a special thing 8 = 4 *2 so instead of x=2, y=4, f(8)=f(2)/4 => f(2)=2f(8) , replace x=4 , y= 2, then f(4)=2f(8) and then substitute in equation 2, we have 6f(8)=6 => f(8)=1

  • @MathOrient
    @MathOrient Рік тому +3

    If I want to solve a functional equation, I always come to your channel :)

  • @goldfing5898
    @goldfing5898 Рік тому

    From first equation follows that
    f(8) = f(2*4) = f(2)/4 and
    f(8) = f(4*2) = f(4)/2
    So
    f(2)/4 = f(4)/2
    Multiply by 4:
    f(2) = 2 * f(4)
    Plug that into second equation:
    2 * f(4) + f(4) = 6
    3 * f(4) = 6
    Divide by 3:
    f(4) = 2
    And since f(2) is twice f(4),
    f(2) = 2 * 2 = 4
    Plug this into above:
    f(8) = f(2)/4 = 4/4 = 1
    f(8) = f(4)/2 = 2/2 = 1.
    Correct.

  • @KennethChile
    @KennethChile Рік тому +1

    I did it applyying method #1. Thanks for the analysis of method #2.

  • @SG49478
    @SG49478 Рік тому +1

    I used kind of a mix of 1st and 2nd method. I set x=1 and then y=2 and y=4 respectively. That gave me two equations with expressions for f(2) and f(4) depending on f(1). Adding these 2 equations gave me an equation with f(2)+f(4)=f(1)/4+f(1)/2. Since f(2)+f(4)=6 I could solve for f(1)=8. From here I could easily calculate f(8) with x=1 and y=8 using the original functional equation with f(8)=f(1)/8=1

  • @ManjulaMathew-wb3zn
    @ManjulaMathew-wb3zn 9 місяців тому

    Another method
    f(x)=yf(xy)
    x=2 and y= 4 gives f(2)=4f(8)
    Switching x and y values gives f(4)=2f(8)
    Add the two equations f(2)+f(4)=6f(8)=6
    f(8)=1
    But I always like to find f(x).

    • @namanhnguyen7933
      @namanhnguyen7933 2 місяці тому

      considering the original expression, if we multiply everything with xy then we have x*f(x)=y*f(y)=xy*f(xy)=C
      with the fact that f(8)=1 then x*f(x)=8f(8)=8 which mean f(x)=8/x

  • @ManjulaMathew-wb3zn
    @ManjulaMathew-wb3zn 9 місяців тому

    f(y)=8/y
    Replace y with xy then f(xy)=8/xy
    Replace xy with yx then f(yx)=8/yx=8/xy=f(xy)

  • @thomaspickin9376
    @thomaspickin9376 Рік тому

    I just kind of eyeballed that from:
    f(xy) = f(x)/y
    If f := 1/x, we have
    1/xy = (1/x)/y, which works.
    Then based on the initial conditions I knew it had to be some c/x then went from there to solve for c.

  • @Utesfan100
    @Utesfan100 Рік тому

    Continuing with your thought at the end of method 1:
    Let xy not be 0. Now f(xy)=f(yx) so f(x)/y = f(y)/x and xf(x) = yf(y).
    But two expressions depending on different variables must be a constant.
    Thus f(x) = C/x.
    Using the second equation C=8, as shown by you.
    Hence f(8)=1.

    • @SyberMath
      @SyberMath  Рік тому

      Wow! That’s neat

    • @angelmendez-rivera351
      @angelmendez-rivera351 Рік тому

      Letting x·y not equal 0 is unnecessary, since one can prove anyway that f(0) = 0.

    • @Utesfan100
      @Utesfan100 Рік тому

      @@angelmendez-rivera351 Indeed, by setting x=0. You can also prove it is undefined by letting y=0.
      In the final form f(x)=C/x, 0 is not in the domain of f(x).

    • @angelmendez-rivera351
      @angelmendez-rivera351 Рік тому

      @@Utesfan100 You cannot set y = 0. You can set x = 0. Also, your statement is incorrect. The domain is the set of all real numbers, R, and f(0) = 0, f(x) = 8/x otherwise. This is the correct solution.

  • @KurenkovDanya
    @KurenkovDanya Рік тому +1

    Hey dude! What do you mean about f(xy)=xyf(x)f(y)

  • @namanhnguyen7933
    @namanhnguyen7933 2 місяці тому

    i thought it was f(2)+f(4)=f(6), but luckily its still solvable. f(x)=0 in this situation

  • @Paul-222
    @Paul-222 Рік тому

    I tried some values for x and y that ended up being unnecessary in the end. Setting x = y = 2 sets up the solution very nicely.
    The moral of the story: always remember 2 x 2 = 4!

    • @DeJay7
      @DeJay7 Рік тому

      Actually, 2x2 = 4! is not true 🤓

    • @Paul-222
      @Paul-222 Рік тому

      @@DeJay7 It’s true in Mod 4, lol.

  • @李承恩-b4b
    @李承恩-b4b Рік тому

    I think we only need to fill 0 or 1 into one of the parameters in the functional equation to solve this kind of functional equation problem in most of the case by my experience.

  • @sampersonguy5337
    @sampersonguy5337 Рік тому +1

    Actually x also cannot be 0 because our function ends up being c/y therefore the function has no solution at 0

    • @angelmendez-rivera351
      @angelmendez-rivera351 Рік тому

      No, this is false. The functional equation as stated can hold for all x in R, and all y in R\{0}. It implies that f(0·y) = f(0)/y = f(0) for all y in R\{0}, and this means that f(0) = 0, but it says nothing about what f is elsewhere.

  • @ashokprajapati6923
    @ashokprajapati6923 7 місяців тому

    Awesome

  • @journeytotheparallel8096
    @journeytotheparallel8096 Рік тому

    I am struggling with proving f(xy) = f(yx), any hints?

    • @angelmendez-rivera351
      @angelmendez-rivera351 Рік тому +1

      For all real x, y, [x·y = y·x]. Therefore, for all real x, y, and for all f : R -> R, [f(x·y) = f(y·x)]. Q. E. D.

  • @popitripodi573
    @popitripodi573 Рік тому

    I think it was an easy one ❤

  • @mega_mango
    @mega_mango Рік тому +1

    Easy one

  • @kianmath71
    @kianmath71 Рік тому

    Answer = 1

  • @angelmendez-rivera351
    @angelmendez-rivera351 Рік тому

    Consider all f : R -> R such that f(x·y) = f(x)/y for all x in R and all y in R\{0}. This implies that f(0·y) = f(0) = f(0)/y for all y in R\{0}, which means that f(0) = 0. It also implies that f(1·y) = f(y) = f(1)/y for all y in R\{0}.
    Find all f : R -> R such that the above is true, AND such that f(2) + f(4) = 6. Notice that f(2) = f(1)/2 and f(4) = f(1)/4, so f(2) + f(4) = f(1)/2 + f(1)/4 = f(1)·(1/2 + 1/4) = 3/4·f(1) = 6, hence f(1) = 8. Therefore, f(x) = 8/x for all x in R\{0}.

  • @butch2kow549
    @butch2kow549 Рік тому

    First method I like better.

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    1

  • @manojsurya1005
    @manojsurya1005 Рік тому

    Nice problem man

  • @premkumarsr4021
    @premkumarsr4021 Рік тому

  • @crazycat1503
    @crazycat1503 Рік тому

    1 minut to solve

    • @TecknoVicking
      @TecknoVicking Рік тому

      15 seconds to solve. Fucking 2 minutes to write it down.