Fool-proof RNN explanation | What are RNNs, how do they work?

Поділитися
Вставка
  • Опубліковано 12 лис 2024

КОМЕНТАРІ • 50

  • @misraturp
    @misraturp  Рік тому +2

    🤔 Curious about deep learning?
    Start with the Fundamentals of Deep Learning booklet to learn the essentials in 25 pages
    misraturp.gumroad.com/l/fdl

  • @AfsalAfz-p2e
    @AfsalAfz-p2e 6 місяців тому +4

    there are several contents on RNN which does not explain the intuition but yours is the best content i've seen which gives you the intuition and concepts in a short video thanks a lot

  • @misraturp
    @misraturp  2 роки тому +9

    Hope this explanation was helpful for you! Did you hear anything for the first time in this video?

  • @Christina-xr6rd
    @Christina-xr6rd 2 роки тому +7

    Ahh this is exactly what I needed! Thank you so much for explaining RNNs in such a clear way :) Keep up the great work - I'm sure it's much appreciated by lots of viewers!

    • @misraturp
      @misraturp  2 роки тому

      That’s great to hear Christina! I’m glad it was helpful. :)

  • @khd_edu
    @khd_edu 6 місяців тому +1

    In only 3 minutes, I understood the concept that I couldn't understand in hours of lectures. Good Girl!

  • @lfmtube
    @lfmtube 2 роки тому +2

    High quality content and very well explained. I saw about 10 different videos of RNN and by far this is the best. thanks a lot!

    • @misraturp
      @misraturp  2 роки тому

      That's great to hear, thank you!

  • @rishidixit7939
    @rishidixit7939 11 місяців тому +1

    Highly Underrated Channel. Just one thing to ask how many layers are there in each RNN as you wrote weight matrices are all same since its actually only one cell. Also when then input from last timestamp comes how is it simultaneously passed along with other input. Are both vectors added ?

  • @siddharthkumar5206
    @siddharthkumar5206 Рік тому +1

    Thank you. This was precisely the explanation I was looking for: especially how the input is handled in terms of time-steps..

  • @patloeber
    @patloeber 2 роки тому

    Awesome video!!! Eagerly waiting for the next one on this channel :)

    • @misraturp
      @misraturp  2 роки тому +1

      Thank you Python Engineer!

  • @Santhosh-x5k3n
    @Santhosh-x5k3n 10 місяців тому +1

    Very intuitive explanation, espeically with your interpretation! Keep up the great work :)

  • @OmkarPawale-ok4xt
    @OmkarPawale-ok4xt Рік тому +1

    crystal clear explaination of RNN !!! Thank You so much ❣

  • @ΑθανάσιοςΣουλιώτης-θ2γ

    thats so clear explanation! It would be awesome to give a real example with sequential data where you have vectors with the weights.

  • @aakashdusane
    @aakashdusane 11 місяців тому

    Wow! You explained this so much better than Lex Fridman :D
    So easy to understand

  • @python2448
    @python2448 2 роки тому +1

    That's a very important topic. This video inspires me to add RNN to my code demonstration library. Thanks.

  • @farzinjafari5224
    @farzinjafari5224 5 місяців тому

    Very clear description, thank you!

  • @cv462-l4x
    @cv462-l4x 8 місяців тому

    Explanation is fine. Only one wish is to make some insulation in the studio to avoid big echo

  • @jerem1208
    @jerem1208 2 роки тому

    Thank you for your amazing explanations ! I have now a better understanding of LSTM thanks to you clarity.

    • @misraturp
      @misraturp  2 роки тому

      That's great to hear Jérémy!

  • @miras3780
    @miras3780 7 місяців тому

    hi there, may I ask if RNN (particularly LSTM) can be trained as any NN for both classification and detection? like can I classify action and detect say face ?

  • @shekharn2602
    @shekharn2602 Рік тому +1

    Amazing Explanation!! 👏

  • @rishidixit7939
    @rishidixit7939 3 місяці тому

    Amazing Explanation

  • @nebojsabacanin8920
    @nebojsabacanin8920 Рік тому

    Very well and clearly explained. Thanks

  • @sachinprabhusachinprabhu007
    @sachinprabhusachinprabhu007 2 роки тому

    Hello Misra 🙂🌻 Thank you so much for concise summary on RNN and variants 🎉

    • @misraturp
      @misraturp  2 роки тому +1

      You are very welcome. :)

  • @frommarkham424
    @frommarkham424 4 місяці тому

    this tutorial is fire

  • @BlitzHitz
    @BlitzHitz 5 місяців тому

    Thank you for sharing this.

  • @techelefant9868
    @techelefant9868 2 роки тому +1

    you are doing awesome job, thank you !

  • @frommarkham424
    @frommarkham424 4 місяці тому

    WE MAKING IT OUTTA THE AGI WITH THIS ONE🗣🗣🗣🗣💯💯💯💯🔥🔥🔥🔥

  • @danielcanedo5240
    @danielcanedo5240 Рік тому

    Very Good explained

  • @JessWLStuart
    @JessWLStuart 11 місяців тому

    I read the title and thought: "Fool-proof? Well, I'm a fool! I better watch this!"

  • @guru_bro
    @guru_bro Рік тому

    Good explanation.

  • @seattledude2022
    @seattledude2022 10 місяців тому

    Your video just proved me a fool. I now understand it

  • @akillarazarar
    @akillarazarar 2 роки тому

    This is awesome! Thank you!!

    • @misraturp
      @misraturp  2 роки тому

      Thanks! and you are very welcome :)

  • @mehdismaeili3743
    @mehdismaeili3743 2 роки тому

    Hi, thanks for your helpful videos, you are very smart and beautiful.

    • @misraturp
      @misraturp  2 роки тому

      Great to hear you like the videos!

  • @etain8605
    @etain8605 2 роки тому

    thanks

  • @Mike-rw8if
    @Mike-rw8if 2 роки тому

    I am from india i am in 10th grade i know little python i wanna become a data scientist can i take this course? On your website in this your official website i hope?? Please give me a reply?

    • @misraturp
      @misraturp  2 роки тому

      Hey Mike, yes the link in the description is my official website. :)

  • @ericbroun4657
    @ericbroun4657 2 роки тому

    💯💯💯💯💯💯