Decision Tree Pruning explained (Pre-Pruning and Post-Pruning)

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 29

  • @AndrewCodeDev
    @AndrewCodeDev 4 роки тому +4

    Thank you very much for making these tutorials. Your visual presentation and general descriptions are great. I'll be watching out for future content!

  • @wennie2939
    @wennie2939 3 роки тому +3

    The BEST explanation and code EVER! Thank you so much, Sebastian!

  • @izb1275
    @izb1275 6 місяців тому

    Thanks for the tutorial finally I understand pre-pruning and post-pruning!

  • @mansoorbaig9232
    @mansoorbaig9232 4 роки тому +2

    Great blog post Sebastian. I am glad I figured this.

  • @redforestx7371
    @redforestx7371 2 роки тому

    SUPERB EXPLANATION! THANK YOU!

  • @gautamdawar5067
    @gautamdawar5067 3 роки тому +2

    Great tutorial and so structured! Amazing!

  • @affanahmedkhan7362
    @affanahmedkhan7362 2 місяці тому +1

    جزاکم اللہ خیرا بھائی

  • @affanahmedkhan7362
    @affanahmedkhan7362 2 місяці тому +1

    Phenomenal job ❤❤❤❤❤

  • @eladiomendez8226
    @eladiomendez8226 Рік тому

    Great explanation!

  • @maximebelloable
    @maximebelloable 4 роки тому +2

    Thank you so much! Great tutorial, it really helped me out for an exam

  • @madhurir9646
    @madhurir9646 3 роки тому +1

    Very Informative video. Thank you for sharing it helped to solve my machine learning assignment. Waiting for more conceptual videos.

  • @AkshayRaman97
    @AkshayRaman97 3 роки тому

    Great explanation! Earned a sub

  • @hopelesssuprem1867
    @hopelesssuprem1867 Рік тому

    could you pls explain what type of pruning is it i.e. is it cost complexity pruning like in CART or something another and why did you decide to use this method?

    • @SebastianMantey
      @SebastianMantey  Рік тому +1

      I am assuming you are referring to post-pruning: As I mention at 14:44, the process is called “Reduced Error Pruning”. And I used it simply because that’s the process that was described in the book I was using, namely “Fundamentals of Machine Learning for predictive data analytics”.

    • @hopelesssuprem1867
      @hopelesssuprem1867 Рік тому

      @@SebastianMantey oo, thanks. Now I've understood everything.

  • @rohan_barghare
    @rohan_barghare 4 роки тому

    nice explanation ..thanks!!!

  • @syasyazuhaimi
    @syasyazuhaimi 3 роки тому

    may i know the difference between testing data and validation data?

  • @minakshimathpal8698
    @minakshimathpal8698 3 роки тому

    thank you for this video

  • @juanete69
    @juanete69 2 роки тому

    Do you do it with cross-validation?
    How? What happens if at each k-fold you get a different model?

    • @SebastianMantey
      @SebastianMantey  2 роки тому

      I’m assuming that you are referring to post-pruning:
      In this video, I just focus on the most basic use case of post-pruning where you build the tree with the training data, prune it with the validation data and then test it with the testing data.
      K-fold cross-validation is another technique on its own. It doesn’t really have something specifically to do with post-pruning. However, I think, you could also use it with post-pruning if you wanted to.

  • @AA-yk8zi
    @AA-yk8zi 4 роки тому

    Thank you!!

  • @lucutes2936
    @lucutes2936 2 місяці тому

    pessimistic vs optimistic pruning?

  • @xiujiesong3095
    @xiujiesong3095 3 роки тому

    brilliant!