Розмір відео: 1280 X 720853 X 480640 X 360
Показувати елементи керування програвачем
Автоматичне відтворення
Автоповтор
★より思考力を高めたい方は有料講座もどうぞ★10本以上の動画が見放題で月490円です!まずは1か月だけでもお試しにどうぞ!動画は毎月追加していきます!ua-cam.com/channels/GS1dnvPH4zyyZZ2JjS22cg.htmljoin
分かりやすい動画ですね。しかしこのセオリーはどのギャンブルに当てはめられるのかな? パチスロ、競馬、競輪、宝くじか?
独立事象と従属事象のことを理解すればこの動画はもっと分かりやすくなる!
確率の従属事象と独立事象の話ですね。いつもありがとうございます。
あと、確率が同じならの前提で話してるけど、現実のコインやサイコロでは特定の目が続いたら重心が偏ってる可能性があるから、続いてる目にかけた方がいい。
いつもためになる動画をありがとうございます!とてもわかりやすいです!
良かったです!その言葉をいただくために頑張りました😆笑
不確定な未来に資金を投じる投資の世界でもギャンブラーの誤謬の認識はかなり重要になってきます。統計的な勝率がわかっていても、運悪く連続で負けてしまうと破産してしまう事になるので、投じる資金量の適正値の目安となる「バルサラの破産確立表」なんてものも存在します。
いつもコメントありがとうございます!おぉ~、そうなんですね!「バルサラの破産確率表」!勉強になります(/・ω・)/
ありがとうございます。リクエストに答えていただきありがとうございました。確かに言われるとその通りなのですが、いざ目前になると引っかかってしまうかも知れませんね。変な話1) 1/2の確率で当たるガチャがある、5回分挑戦できるクレジットがある、なら挑戦してみよう。はある程度正解だけど2)1)の結果、ガチャに4回も外れてしまった。クレジットがあと1回残ってるけど4回も外れたからラストチャンスに…。というのはあまり正解じゃないんですね。その場合は損切りをした方が安全なのかも知れませんね…。
いえいえ、こちらとしてもニーズが知れて有り難かったです(^○^)確かにそうですね!「サンクスコストバイアス(コンコルド効果)」で損切りはなかなか勇気のいる決断ですね!(^^)
イカサマでなくても、4回連続でハズレならトスの仕方かコインに多少の癖がある可能性がある。そうなった場合完全確率ではなくなるから、5回目はハズレにはったほうがいい。世の中に完全確率はない。
ただ運の偏りで全然あり得ることに対して流れとか何かしら理由をつけちゃうのも判断を誤る原因になるから危ないんだよね
物理的に考えたらこれから投げるコインの動きに過去は全く影響しないことは見ればわかるのに、何故影響すると思うのかがわからない独立事象、同様に確からしい確率の問題と考えても同じだし
仰る通りですね!でも、なぜか誤解する人たくさんいますね😆笑
12分この動画見るだけで一生得できるやん
結論直感的に1/2と感じれない人はギャンブルには不向きですね。
ギャンブラーの誤謬の誤謬にも注意その場合はイカサマ
でも、確率は収束するから5回目の当たりの出る可能性は高いよ。確率は五じゅっぱーせんとだけど
しかも、グラフを拡大した時点では、ハズレが大幅に増えてるけど、それまでは確率が収束して当たりがハズレを上回ったりしてるよ。パチンコで儲けるにはこの、確率の収束を利用してもうけるんだよ。
ギャンブル=イカサマ
パチンコによくある話やなこれ
カジノのディーラーは狙った目に球を入れられるので100回連続黒とか普通に出せますよ。最初の問題、競馬の考え方だと4回連続はずれが出たら5回目ははずれが出る確率が高いと考えます。なぜなら4回連続ではずれが出るということは、そのコインにははずれが出やすい偏りがあると考えます。8枠までのうち5年連続1枠が勝っているレースが有ったら、もう1枠は来ないだろうではなく1枠が有利なレースだから1枠を買おうと考えます。
100回連続黒なんて聞いた事ねーよしかもそんな事あれば100%イカサマなんだから今後客はいらねえよ
@@f6p47k5 やろうと思えばできる!というだけで特定のカモを潰す時以外やらないからですよ。
モンティホール問題
24回経験してイカサマを知った
純粋ですね(´っ・ω・)っ
24回はイカサマではない
数学の問題ならすべからく「イカサマはなく」の条件がつくだろうけれど、実際の現場だったらイカサマや、意図せぬ偏りを疑ったほうが無難かな
確率じゃないんだよ寝ぼけてんなよ
4回連続でハズレが出ているというコイン、イカサマも視野に入れて考えた方が良さそうですね。
景気悪いからみんな節約したらもっと景気悪くなったみたいな。
ギャンブルなどの確率はあってないようなもの
え!そうだったんですか!?(笑)
話は分かりやすいが、どう実際のギャンブルと関連してるのか?例えば競艇の場合はとか実際の事象に合わせないと参考にはならない
★より思考力を高めたい方は有料講座もどうぞ★
10本以上の動画が見放題で月490円です!
まずは1か月だけでもお試しにどうぞ!動画は毎月追加していきます!
ua-cam.com/channels/GS1dnvPH4zyyZZ2JjS22cg.htmljoin
分かりやすい動画ですね。しかしこのセオリーはどのギャンブルに当てはめられるのかな? パチスロ、競馬、競輪、宝くじか?
独立事象と従属事象のことを理解すればこの動画はもっと分かりやすくなる!
確率の従属事象と独立事象の話ですね。いつもありがとうございます。
あと、確率が同じならの前提で話してるけど、現実のコインやサイコロでは特定の目が続いたら重心が偏ってる可能性があるから、続いてる目にかけた方がいい。
いつもためになる動画をありがとうございます!とてもわかりやすいです!
良かったです!その言葉をいただくために頑張りました😆笑
不確定な未来に資金を投じる投資の世界でもギャンブラーの誤謬の認識はかなり重要になってきます。
統計的な勝率がわかっていても、運悪く連続で負けてしまうと破産してしまう事になるので、
投じる資金量の適正値の目安となる「バルサラの破産確立表」なんてものも存在します。
いつもコメントありがとうございます!おぉ~、そうなんですね!「バルサラの破産確率表」!勉強になります(/・ω・)/
ありがとうございます。
リクエストに答えていただきありがとうございました。
確かに言われるとその通りなのですが、いざ目前になると引っかかってしまうかも知れませんね。
変な話
1) 1/2の確率で当たるガチャがある、5回分挑戦できるクレジットがある、なら挑戦してみよう。
はある程度正解だけど
2)1)の結果、ガチャに4回も外れてしまった。クレジットがあと1回残ってるけど4回も外れたからラストチャンスに…。
というのはあまり正解じゃないんですね。
その場合は損切りをした方が安全なのかも知れませんね…。
いえいえ、こちらとしてもニーズが知れて有り難かったです(^○^)
確かにそうですね!「サンクスコストバイアス(コンコルド効果)」で損切りはなかなか勇気のいる決断ですね!(^^)
イカサマでなくても、4回連続でハズレならトスの仕方かコインに多少の癖がある可能性がある。
そうなった場合完全確率ではなくなるから、5回目はハズレにはったほうがいい。
世の中に完全確率はない。
ただ運の偏りで全然あり得ることに対して流れとか何かしら理由をつけちゃうのも判断を誤る原因になるから危ないんだよね
物理的に考えたらこれから投げるコインの動きに過去は全く影響しないことは見ればわかるのに、何故影響すると思うのかがわからない
独立事象、同様に確からしい確率の問題と考えても同じだし
仰る通りですね!でも、なぜか誤解する人たくさんいますね😆笑
12分この動画見るだけで一生得できるやん
結論
直感的に1/2と感じれない人はギャンブルには不向きですね。
ギャンブラーの誤謬の誤謬にも注意
その場合はイカサマ
でも、確率は収束するから5回目の当たりの出る可能性は高いよ。確率は五じゅっぱーせんとだけど
しかも、グラフを拡大した時点では、ハズレが大幅に増えてるけど、それまでは確率が収束して当たりがハズレを上回ったりしてるよ。パチンコで儲けるにはこの、確率の収束を利用してもうけるんだよ。
ギャンブル=イカサマ
パチンコによくある話やなこれ
カジノのディーラーは狙った目に球を入れられるので100回連続黒とか普通に出せますよ。
最初の問題、競馬の考え方だと4回連続はずれが出たら5回目ははずれが出る確率が高いと考えます。なぜなら4回連続ではずれが出るということは、そのコインにははずれが出やすい偏りがあると考えます。8枠までのうち5年連続1枠が勝っているレースが有ったら、もう1枠は来ないだろうではなく1枠が有利なレースだから1枠を買おうと考えます。
100回連続黒なんて聞いた事ねーよ
しかもそんな事あれば100%イカサマなんだから今後客はいらねえよ
@@f6p47k5 やろうと思えばできる!というだけで特定のカモを潰す時以外やらないからですよ。
モンティホール問題
24回経験してイカサマを知った
純粋ですね(´っ・ω・)っ
24回はイカサマではない
数学の問題ならすべからく「イカサマはなく」の条件がつくだろうけれど、実際の現場だったらイカサマや、意図せぬ偏りを疑ったほうが無難かな
確率じゃないんだよ
寝ぼけてんなよ
4回連続でハズレが出ているというコイン、イカサマも視野に入れて考えた方が良さそうですね。
景気悪いからみんな節約したらもっと景気悪くなったみたいな。
ギャンブルなどの確率はあってないようなもの
え!そうだったんですか!?(笑)
話は分かりやすいが、どう実際のギャンブルと関連してるのか?
例えば競艇の場合はとか実際の事象に合わせないと参考にはならない