🚨 2.4 mg/L घुलित ऑक्सीजन? मिट्टी के लिए खतरा! | LIVE टेस्ट रिजल्ट in Jiva Amrit ⚠️

Поділитися
Вставка
  • Опубліковано 3 лют 2025

КОМЕНТАРІ • 6

  • @greenaffairindia
    @greenaffairindia  4 дні тому +2

    🚨 क्या आपकी मिट्टी में ऑक्सीजन की कमी हो रही है? 🚨
    हमने Jiva Amrit में घुलित ऑक्सीजन (DO) का LIVE टेस्ट किया और परिणाम चौंकाने वाले थे! 😱 DO सिर्फ 2.4 mg/L होने पर मिट्टी और सूक्ष्मजीवों पर इसका गंभीर प्रभाव पड़ता है।
    ⚠ वीडियो देखें और जानें:
    ✅ घुलित ऑक्सीजन क्या है और इसका सही स्तर क्या होना चाहिए?
    ✅ 2.4 mg/L DO के कारण मिट्टी और पौधों पर क्या असर पड़ता है?
    ✅ कैसे पता करें कि आपकी मिट्टी में ऑक्सीजन की कमी हो रही है?
    ✅ इसे सही करने के आसान और प्रभावी तरीके!
    💬 आपके क्या विचार हैं? क्या आपने भी कभी ऐसी समस्या देखी है? नीचे कमेंट करें! 👇
    🔔 चैनल को सब्सक्राइब करें और बैल आइकन दबाएं ताकि आपको और ऐसे महत्वपूर्ण टेस्ट और जानकारियाँ मिलती रहें! 🌱
    #DissolvedOxygen #JivaAmrit #SoilHealth #RegenerativeAgriculture #Greenaffair

  • @jaatboy_hr22
    @jaatboy_hr22 4 дні тому +1

    Thank you for sharing such amazing information about DO importance in jeevamrit ❤

  • @kyawswarthintswe9217
    @kyawswarthintswe9217 3 дні тому

    မဂ်လာပါအေးချမ်းသာယာပျော်ရွင်ချမ်းမြေ့ပါစေ
    စာပေမြင့်ပြီးလူမျိုး တင့်ပါစေ

    • @greenaffairindia
      @greenaffairindia  3 дні тому

      जय किसान, जय मिट्टी & जय हिंद

  • @devangnaik6647
    @devangnaik6647 12 годин тому

    1. Which chemical you added to the sample?
    2. Chemical adding will not give the right reading of natural oxygen level.
    3. You have to develop a process to check the oxygen level without any addition.( naturally)
    4. How you derived 2.4 level is alos not clear. I.e. above 2.4 is good and below is not good.
    5. Need more information for conclusion. At present it is not clear.
    6. Do you have any research and data for this? If yes please share
    Thank you so much

    • @greenaffairindia
      @greenaffairindia  6 годин тому

      Thank you for your questions.
      We used reagents to calculate dissolved oxygen (DO) levels, following standard protocols for DO estimation. Additionally, we cross-check our findings using microscopy techniques to assess biological oxygen demand and microbial activity.
      Chemical Addition and Accuracy: While reagent-based methods are commonly used, we understand concerns about their influence on natural oxygen levels. That’s why we combine microscopy analysis with DO testing to observe microbial activity and oxygen consumption trends in a more holistic manner.
      Natural DO Measurement: Developing a process to measure DO without chemical additions is an interesting approach. We already use live microbial assessments under microscopy to determine oxygen demand in soil and compost samples. If you have specific non-invasive methodologies in mind, we’d love to discuss and compare findings.
      The 2.4 mg/L threshold for dissolved oxygen (DO) is based on research related to microbial respiration, soil oxygen dynamics, and the impact of hypoxia on beneficial soil microbes. Below are key references and sources that support this value:
      1. Oxygen Requirements for Aerobic Microbial Activity
      Paul, E.A. (2014). Soil Microbiology, Ecology, and Biochemistry (4th ed.). Academic Press.
      This book explains how aerobic microorganisms require a minimum of 2 mg/L DO to function efficiently. Below this level, facultative and anaerobic microbes dominate, leading to reduced nutrient cycling and increased production of anaerobic metabolites like methane and hydrogen sulfide.
      Alexander, M. (1977). Introduction to Soil Microbiology (2nd ed.). Wiley.
      The study outlines that aerobic microbial respiration significantly slows below 2 mg/L DO, reducing the decomposition of organic matter and nitrogen cycling.
      2. Hypoxia and its Effect on Soil and Water Systems
      Reddy, K.R., D’Angelo, E.M. (1997). Biogeochemical Indicators to Evaluate Pollutant Removal Efficiency in Constructed Wetlands. Water Science and Technology, 35(5), 1-10.
      This study found that DO levels below 2.4 mg/L create hypoxic conditions, which reduce microbial efficiency in breaking down organic pollutants and disrupt nitrification.
      Conrad, R. (1996). Soil Microorganisms as Controllers of Atmospheric Trace Gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 60(4), 609-640.
      The paper discusses how hypoxic conditions (DO < 2 mg/L) increase the dominance of anaerobic microbes, leading to nitrous oxide (N2O) and methane (CH4) emissions, harming soil health.
      3. Soil Respiration and DO Thresholds
      Tiedje, J.M. (1988). Ecology of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. Biology of Anaerobic Microorganisms.
      The book details how DO levels below 2.4 mg/L encourage denitrification, leading to nitrogen loss rather than availability for plants.
      Stumm, W., & Morgan, J.J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley-Interscience.
      This reference explains how oxygen diffusion in soils and water is limited below 2.4 mg/L, reducing oxidative processes crucial for organic matter breakdown.
      4. Practical Applications in Agriculture
      Brady, N.C., & Weil, R.R. (2016). The Nature and Properties of Soils (15th ed.). Pearson.
      This text emphasizes the importance of maintaining soil oxygen levels above 2.4 mg/L to ensure root respiration and microbial activity.
      FAO (Food and Agriculture Organization) Guidelines on Soil Health (2019)
      Aerobic microbes struggle, reducing nutrient cycling efficiency.
      Anaerobic conditions promote denitrification, leading to nitrogen loss.
      Methanogenic bacteria increase, leading to higher methane emissions.
      Soil structure deteriorates, affecting plant root oxygen availability.
      Additional Information: We acknowledge the need for more details and will share further breakdowns, including microscopy observations, oxygen consumption trends, and soil health indicators for a comprehensive picture.
      Research and Data: Yes, we have supporting research and real-time microscopy data that align with Soil Food Web principles. We can share documentation, studies, and comparative analyses upon request. Let us know the specific data points you’d like to review.
      We appreciate your insights and look forward to further discussion on refining natural measurement techniques.