If D is integral domain then polynomial Ring is also integral domain

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 14

  • @india6596
    @india6596 5 років тому +1

    sir ring theory chapter ki aur theorem k proof ki video bhi upload krdo please .i will be very thankfull to you

  • @Mathemastery
    @Mathemastery 3 роки тому +2

    Very good lectures 👍🏻 keep doing

  • @sabazahid426
    @sabazahid426 Рік тому

    We have to show polynomial ring an integral domain. Whereas polynomial ring contains finite polynomials...so how can we prove it using infinite polynomials f(x) and g(x)... Aren't we supposed to differentiate it from formal power series ring??

  • @sakshi8808
    @sakshi8808 4 роки тому +1

    Sir plzz solve converse part of this therom

  • @chandrashekharsingh8387
    @chandrashekharsingh8387 5 років тому +2

    Thanks sir

  • @Explainer103
    @Explainer103 5 років тому +1

    Zero divisor= if a.b=0,then neither a=0,nor b=0,without zero divisor means if a.b=0 then a=0 or b=0

    • @PathFindersAcademy
      @PathFindersAcademy  5 років тому

      ya ur argument is correct. On the other way to Prove that in a Ring there is no zero divisors that is we have to show that product of any two non zero elements say a and b which is not equal to zero ( a.b is not equal to zero for all a and b belongs to Ring)

  • @Explainer103
    @Explainer103 5 років тому +1

    Commutative ring with unity?

    • @PathFindersAcademy
      @PathFindersAcademy  5 років тому +3

      It is very simple to show that D[x] is Commutative because D is integral domain
      Otherwise Take any 2 polynomials denote is as F(x) and g(x) take it's general form find F(x).g(x) by multiplication of polynomial u get expansion as D is integral domain u can interchange elements in products now u get g(x).f(x) this proves that D[x] is Commutative Ring

    • @Explainer103
      @Explainer103 5 років тому +1

      Thannks

    • @chandumudiraj2582
      @chandumudiraj2582 3 роки тому

      Thanku bro👌👌