Intro to Kernel Density Estimation

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 132

  • @n.sabriozturk6520
    @n.sabriozturk6520 6 років тому +114

    Finally here I found a super video that explains briefly and clearly what Kernel Density Estimation is. Thank you so much.

    • @webelod4999
      @webelod4999  6 років тому +6

      Thanks man. Glad the video was of help :)

  • @jasonhe6947
    @jasonhe6947 5 років тому +39

    I love this tutorial, the pace, example, and visualization are just so great

  • @matematikce9490
    @matematikce9490 9 місяців тому +1

    Clean, on the the point, good theory/practice ratio.
    Very much appreciated, thanks.

  • @peterstanbridge3871
    @peterstanbridge3871 3 роки тому +2

    Thank you so much for this presentation - first time I've been able to even begin to understand this at an overview level.

    • @webelod4999
      @webelod4999  3 роки тому +1

      Awesome! Thanks for leaving the nice comment :)

  • @AnonymPlatypus
    @AnonymPlatypus Місяць тому

    Literally within the first 10 seconds, you covered what my lecturer tried to say in 2 hours, and I am paying 45k in tuition!!! (I'm not rich, I'm just heavily indebted, but I am too cowardly to overcome societal pressures of attending a "prestigious" college. Absolutely crushing my mental health)

  • @zyflying
    @zyflying 2 роки тому +2

    Really great intro, briefly and straight to the point

  • @XY-yg1ci
    @XY-yg1ci 8 місяців тому +1

    so straightforward explanation. understand kernel in the first 2 mins

  • @yunfenghu3786
    @yunfenghu3786 5 років тому +4

    Thanks Tommy for this amazing video. I am a visual person and this video gives me a clear view of how density kernel works in 1D and 2D using graphs. Your visualization for norms in higher dimension was fantastic. I will use recommend it to my students in the future!

  • @okokpk123123
    @okokpk123123 2 роки тому +1

    Thank you for your presentation.It is really briefly and clearly.It really helps a lots.Hopes you can share more presentation!

    • @webelod4999
      @webelod4999  2 роки тому

      Thanks! The success (in terms of views) on this video inspires me to create more.

  • @aaronlin8785
    @aaronlin8785 2 роки тому +1

    Amazing video Tommy. I couldn't understand KD in a week of Uchicago lectures and you did it in about 45 seconds.

  • @PianoMan333
    @PianoMan333 2 роки тому +2

    Great video. I found this topic rather abstract but this makes it a lot clearer. Thank you!

  • @ali-kadar
    @ali-kadar 5 років тому +3

    Thank you a ton for the very clear and concise explanation. I like that you go into some algorithmic details nearing the end of the video.

  • @carl416
    @carl416 4 роки тому +1

    Relatively clear exp, good.
    Visuals really make the difference.

  • @IroXtreme
    @IroXtreme 9 місяців тому +1

    Great video, clear and concise - thanks!

  • @luismisanmartin98
    @luismisanmartin98 3 роки тому +1

    This video is absolutely precious! Thank you Tom for taking the time to create this

    • @webelod4999
      @webelod4999  3 роки тому

      Glad you liked it. So happy to get positive feedback, since it took some time to create.

  • @ukvaishnav
    @ukvaishnav 3 роки тому +1

    Thanks for making this video. Its concise and quick guide to KDEs.

  • @michaeljagdharry
    @michaeljagdharry 4 роки тому

    you are amazing, that was one the clearest explanations of a nonstandard statistical concept I have ever seen

  • @timuryalta
    @timuryalta 6 років тому +3

    This deserves much more views!

  • @Scoutik997
    @Scoutik997 2 роки тому

    This is a very clear explanation of KDE, good job

  • @nengjingding5942
    @nengjingding5942 4 роки тому

    Finally found a video to get a rough but clear idea what KDE is. Highly recommend!

  • @barnabyinteractive
    @barnabyinteractive 2 роки тому +2

    super well made couldnt ask for anything better lol

  • @RajeshSharma-bd5zo
    @RajeshSharma-bd5zo 4 роки тому +3

    Beautifully explained!!

  • @marcelsa5191
    @marcelsa5191 2 роки тому

    Extremely good video! Well explained and nice graphics. Thank you and greetings from Oxford :)

  • @rajanalexander4949
    @rajanalexander4949 2 роки тому

    Clear visualisations, succinct and lucid explanations -- fantastic video. Thanks!

  • @pcenxyz1838
    @pcenxyz1838 4 роки тому +1

    Sir thanks for the explaination.Very well explained actually I came here with zero knowledge. Thanks for the explanation and I will definitely use KDEpy in my projects...thanks for saving the day

  • @tgwashdc
    @tgwashdc 4 роки тому +1

    Short, sweet and perfect!

  • @ummesalmamofficial7637
    @ummesalmamofficial7637 3 роки тому

    Thank You Sir for explaining KDE in a simple way.

  • @nakko3017
    @nakko3017 3 роки тому +1

    Thanks for the very clear explanation.
    ありがとうございます

    • @webelod4999
      @webelod4999  3 роки тому

      どういたしまして ! (I used Google Translate)

  • @samuelfischer5131
    @samuelfischer5131 3 роки тому +1

    This is awesome. Thank you for this overview!

  • @tymothylim6550
    @tymothylim6550 3 роки тому +1

    Thank you very much for this video! It was very easy to understand (although this topic is still quite new to me). The use of graphs helps a lot with the explanations!

  • @ZinzinsIA
    @ZinzinsIA 2 роки тому +1

    Very nice, even if i did not get the part about the linear binning and what it is exactly

    • @ZinzinsIA
      @ZinzinsIA 2 роки тому +1

      And very nice for the library btw !

  • @zilezile4942
    @zilezile4942 4 роки тому

    Good evening everyone,
    🔵 Discover now our books and training that we have produced for you on our site. : www.amikour.wordpress.com
    🔵 Click here to go directly to our books and training. : amikour.wordpress.com/nos-formations/

  • @NoorullahYousuf
    @NoorullahYousuf Місяць тому

    loved the value you provided! subscribed :D

  • @Ariel-px7hz
    @Ariel-px7hz 2 роки тому

    Excellent video. Thank you!

  • @delinyahkoning6882
    @delinyahkoning6882 Рік тому

    What a nice video this is! Super clear.

  • @singlebinary
    @singlebinary 5 років тому

    Excellent video and clear explanation. Please keep making more!

  • @snehagaikwad2655
    @snehagaikwad2655 5 років тому +1

    Thank you so much for the video! It was easy to understand conceptually!

  • @alejozen3457
    @alejozen3457 4 роки тому +1

    Great explanation. Thank you for the effort.

  • @aman.bansal
    @aman.bansal Рік тому

    Thank you for making this helpful video.

  • @martinwutke3386
    @martinwutke3386 3 роки тому

    Thanks for this very good explanation. Will definitely look into your library. Best Wishes

  • @powerchucho007
    @powerchucho007 4 роки тому +1

    Thanks a lot. Great explanation!

  • @JayPatel-et4vi
    @JayPatel-et4vi 5 років тому +1

    Best video for KDE

  • @Brumor
    @Brumor 11 місяців тому +1

    Great video, thanks!

  • @stephengargan3907
    @stephengargan3907 Рік тому

    super informative, nice job!

  • @jeffreychong3467
    @jeffreychong3467 Рік тому +1

    Watched about 10 videos, only this one clicked for KDE.

  • @gekkejunior3262
    @gekkejunior3262 3 роки тому +1

    Clear. Thank you a lot!

  • @chenghungchou9521
    @chenghungchou9521 2 роки тому +1

    Amazing easy to understand!!!!!!!!

  • @qwqsimonade3580
    @qwqsimonade3580 3 роки тому

    thanks for the dedicated video

  • @bernardoamorim9182
    @bernardoamorim9182 4 роки тому +1

    amazing tutorial, thank you very much for the video and the library :)

  • @TroelsMouritzen-m6g
    @TroelsMouritzen-m6g Рік тому +1

    Great visualizations

  • @NadavBenedek
    @NadavBenedek Рік тому +1

    Great audio quality

    • @webelod4999
      @webelod4999  Рік тому

      Thanks. For anyone curious, the microphone I use is Audio Technica AT2020 USB+

  • @h-hugo
    @h-hugo 4 роки тому +1

    Very nice lecture!

  • @lifestoriesfromearth6271
    @lifestoriesfromearth6271 5 років тому +1

    Thank You Tommy for this wonderful explanation. :-)

  • @himanshudalai1028
    @himanshudalai1028 5 років тому +1

    Thank you so much for the video. Loved it.

  • @rhodesengr
    @rhodesengr Рік тому

    Thanks for this video. It makes the concept very clear. Other videos, not so much. I have an application where I would like to use 2D KDE on data sets that are set of point on an xy plane. My goal is to fit a 2D Gaussian to the data and then compare goodness of fit for different data sets. I believe I first need to generate a density function for the data and then fit the Gaussian to the density function. KDE looks like a good way to generate the density function. I would prefer to do this in Excel so an Excel plugin would be ideal. I am not really setup (or proficient) to do regular programming in Python, C, or whatever.

  • @khubaibraza8446
    @khubaibraza8446 4 роки тому

    Thank you so much, Super clear explanation.

  • @Colegial24
    @Colegial24 5 років тому

    Excellent video! Extremely helpful!

  • @juandavidcaicedoms7686
    @juandavidcaicedoms7686 6 років тому +2

    Thnks for this video! It’s a really good explanation, super helpful!

    • @webelod4999
      @webelod4999  6 років тому +1

      Thanks man, I appreciate it!

  • @giuliofederico7638
    @giuliofederico7638 3 роки тому

    Perfect explanation

  • @Abafoteq-Ltd
    @Abafoteq-Ltd 4 роки тому

    Wow..... wonderful. thank you so much. this was indeed very helpful.

  • @makimakiwii
    @makimakiwii 5 років тому +1

    Very helpful. Thank you so much!

  • @pranavkumar9782
    @pranavkumar9782 3 роки тому +1

    Is it possible to sample from the KDE after fitting, either in sklearn or KDEpy, apart from the usual method of going to a point x_i and sampling from N(x_i, h) if the kernel is Gaussian in the KDE ?

    • @webelod4999
      @webelod4999  3 роки тому +1

      Not that I know of. You could use the Inversion method and the CDF of the returned PDF, but "the usual method" that you mention is equivalent to sampling from the PDF.

  • @bean217
    @bean217 9 місяців тому

    9:50 why is the sum only normalized by 1/(h^d) and not 1/(N * h^d) ?

  • @raduiulia4034
    @raduiulia4034 4 роки тому +1

    Amazing video!

  • @laxmanbisht2638
    @laxmanbisht2638 3 роки тому +1

    precisely explained

  • @nassehk
    @nassehk 5 років тому

    What a great video. Thank you.

  • @aparnamuralidhar5413
    @aparnamuralidhar5413 2 роки тому +1

    Hello there. I tried using your KDE package for my work. Used FFT KDE. When i was trying to evaluate the model with some data-i got an error-'Every data point must be inside the grid" . could you elaborate on this,please?

    • @webelod4999
      @webelod4999  2 роки тому

      If you have a data point at 0, say, and you grid ranges from 1 to 5, then you will get this error. The data point is outside of the grid. Best to let KDEpy create the grid for you. It automatically sets up a reasonable grid.

  • @capricacity
    @capricacity 5 років тому +23

    I wish I saw this before completing my PhD. This would have made the process "smoother" get what i mean? HAHA!!!

  • @canmetan670
    @canmetan670 5 років тому

    Thanks man. Great video.

  • @rajm3496
    @rajm3496 5 років тому +2

    genius...happy that I found this :-)

  •  3 роки тому +1

    Sorry for the dumb question but why in the first formula X is subtracting Xi? What it does mean?

    • @webelod4999
      @webelod4999  3 роки тому +1

      If I have a function f(x), then subtracting 2 will shift the function. So f(x-2) shifts the function to the right by 2. When we subtract the data point x_i, we shift the kernel function so it lies "on top" of that data point.

    •  3 роки тому

      @@webelod4999 Thank you very much 🙌🙌🙌

  • @richardtarbell946
    @richardtarbell946 3 роки тому +1

    This is king shit right here.

  • @nallakrishna8796
    @nallakrishna8796 Рік тому

    finally, i found an amazing lecture on kernel density estimation thanks a lot . but i have one query how it can be used to find the anomaly detection. sir can u please make one lecture about this topic otherwise can u please recommand me some good references for KERENEL DENSITY ESTIMATION FOR ANOMALY DETECTION

  • @MiroLogie
    @MiroLogie 5 місяців тому

    Thanks for the video, what you used to do the plots BTW

    • @webelod4999
      @webelod4999  4 місяці тому

      This is a nice extension/improvement! I considered looking at moves too, but determined that (1) getting and preprocessing the data and (2) potentially optimizing over both pokemon and moves would be too much work for a weekend project. If anyone wants to take this even further, I think your ideas are good. At the end of the day the most interesting thing might be to train a reinforcement learning algorithm (like alphago / alphazero et al), but that would be a lot of work!

  • @diwakarns1600
    @diwakarns1600 4 роки тому +1

    Thank you..I did not understand what a norm is, can you explain a bit more on that? Thank you!

    • @webelod4999
      @webelod4999  4 роки тому

      It's basically a measure of distance. A generalization of abs(x) in one dimension. See Wikipedia :)

  • @lilaberkani4376
    @lilaberkani4376 3 роки тому

    Thank you so much for your video, it helps me a looot

  • @TheOfficialJeppezon
    @TheOfficialJeppezon 6 років тому +1

    Please make more videos!

  • @abdizinab7934
    @abdizinab7934 4 роки тому +1

    Thanks you some much, please Can you sent me the programs of all those representations

  • @teresaebernardo
    @teresaebernardo 3 роки тому +1

    Does the size of the grid make a difference?

    • @webelod4999
      @webelod4999  3 роки тому

      Yes. The finer the grid, the better the results. In KDEpy the default is 1024 grid points.

  • @juheesingh1157
    @juheesingh1157 6 років тому

    Very hepful video 😊

  • @LeeLeeCode
    @LeeLeeCode 5 років тому +1

    Thank you!

  • @justforsynchtc
    @justforsynchtc 3 роки тому

    Having to implement this and don't understand the "discrete convolution (possibly by fourier transform)". Any pointers?

    • @webelod4999
      @webelod4999  3 роки тому

      Look to wikipedia for information about discrete convolution.

  • @cendradevayanaputra7150
    @cendradevayanaputra7150 2 роки тому

    do you have review of Density Estimation?

  • @realreactteseract6261
    @realreactteseract6261 5 років тому +1

    Amazing, really!!!!

  • @zahrahsharif8431
    @zahrahsharif8431 4 роки тому

    Hi, how would you interpret a kde if the x axis is probability and the y axis is density?

    • @webelod4999
      @webelod4999  4 роки тому

      As a prior distribution in Bayesian statistics.

  • @canernm
    @canernm 5 років тому

    Thanks for the video ! Quick question, are the kernel functions probability density functions? I know the fulfull their properties, but is that enough to make them PDFs? Thanks in advance.

    • @webelod4999
      @webelod4999  4 роки тому +1

      They are, yes. If they fulfill the properties, they are PDFs by definition.

  • @MiroLogie
    @MiroLogie 5 місяців тому

    What you used to plot the data ?

  • @shivshankarkeshari6604
    @shivshankarkeshari6604 4 роки тому

    4.07- 4.14 how can I do similar in my py project?

  • @Borzacchinni
    @Borzacchinni 4 роки тому

    Do you happen to be from Norway?

  • @dayy14
    @dayy14 5 років тому +1

    Thanks a lottttt!!!

  • @jeanny2852
    @jeanny2852 4 роки тому

    what is the difference between x and xi?

    • @webelod4999
      @webelod4999  4 роки тому

      x is a continuous variable (the domain), while the x_i's are the observations in the sample.

  • @thomasalderson368
    @thomasalderson368 4 роки тому +1

    Liked!

  • @SLee-xj4jn
    @SLee-xj4jn 5 років тому

    Best

  • @jg9193
    @jg9193 5 років тому

    Wow...

  • @43SunSon
    @43SunSon 4 роки тому

    pika pika

  • @svendavidsson
    @svendavidsson 3 роки тому +1

    Great explanation!

  • @felipefavadelima
    @felipefavadelima 3 роки тому

    Thanks for your video! Very well explained.

  • @songmichaelbai
    @songmichaelbai 5 років тому

    Nice tutorial! Thanks!

  • @mahadeibnsalam6735
    @mahadeibnsalam6735 4 роки тому +1

    Great content!

  • @ebrahimfeghhi1777
    @ebrahimfeghhi1777 3 роки тому +1

    Thank you, great explanations!