Unit #7 Lesson 3: Kernel estimation

Поділитися
Вставка
  • Опубліковано 5 січ 2025

КОМЕНТАРІ • 16

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w 9 місяців тому

    Is it possible to get a playlist to reflect the sequence of the videos in the series. Makes it easier to download the entire series in one step.

  • @Nana-wu6fb
    @Nana-wu6fb 2 роки тому +1

    Thank you so much Brian, this is super helpful!!!!

  • @yzhang4970
    @yzhang4970 4 роки тому +1

    love your video! love your voice!

  • @kaiwan5382
    @kaiwan5382 3 роки тому

    Thank you for this great video. The references are very helpful.

  • @mbikaziketelo5707
    @mbikaziketelo5707 6 місяців тому

    this is for me but I am understanding you . thank you

  • @abdulhakeemeideh3876
    @abdulhakeemeideh3876 2 роки тому +1

    Highly appreciated!

  • @uzairnouman4876
    @uzairnouman4876 3 роки тому

    so much underrated! Thanks Brian :)

  • @satyamgopal
    @satyamgopal 3 роки тому

    Thanks Brian for informative video. Is there a way to apply differentiation post smoothing..?

  • @summadayze733
    @summadayze733 Рік тому

    I think Epenechnikov kernel should be in form of (a+bx^2). you accidentally put the square outside the brackets

  • @rolfjohansen5376
    @rolfjohansen5376 Рік тому

    Let's say you were given a task : Make me the MLE (Maximum Likelihood Est) of:
    Y=f(xi) + ei (as presented in the vid)
    and they do not specify any kernel or how the f(xi) looks like.
    How to attack this?

  • @Mohammed-yl5wr
    @Mohammed-yl5wr 7 місяців тому +1

    is not the Epanechnikov kernel defined as 3/4 (1 - x^2) not 3/4 (1-x)^2

  • @inusual11
    @inusual11 3 роки тому

    Great job. Can you Share the slides?

  • @areejareej281
    @areejareej281 9 місяців тому

    Is kernel regression is another name of kernel ridge regression?

    • @brianzaha
      @brianzaha  6 місяців тому

      They aren’t equivalent. “Ridge” regression provides a different way of balancing the bias-variance tradeoff.

  • @lucga7015
    @lucga7015 2 роки тому

    At the beginning of the video, you define that the variance is constant for all e_i. Worse in the example you give, it is clear that the variance is not constant

  • @jojoboynat
    @jojoboynat 3 роки тому

    ty