Can You Outsmart This Math Challenge? | An Integration Problem

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 7

  • @Quest3669
    @Quest3669 Місяць тому +1

    √2sin^-1(sinx-cosx)+c

  • @gregevgeni1864
    @gregevgeni1864 Місяць тому

    The key, t = sin x - cos x .
    √tan x + √cot x = √((sin x)/cos x)) + √((cos x)/(sin x)) ={(√sin x)^2) + (√cos x)^2}/√(sin x)(cos x) =
    (sin x + cos x)/√(sin x)(cos x) (*)
    So the original integral written
    Int {(sin x + cos x)/√(sin x)(cos x)} dx = K, due to (*) .
    Put t = sin x - cos x .(**)
    Then dt = (sin x + cos x) dx,
    t^2 = (sin x - cos x)^2 =
    = 1 - 2 (sin x)(cos x) =>
    (sin x)(cos x) = (1 -t^2)/2 .
    Hence K = Int( dt /(√(1 -t^2)/2) =
    = Int ( dt / (√(1 - t^2)/√2) =
    = √2 Int ( dt /√(1 -t^2)=
    √2 arc sin(sin t) + c =
    = √2 arc sin( sin x - cos x) + c.

  • @RashmiRay-c1y
    @RashmiRay-c1y Місяць тому

    The integral can be written as \int dx [(sin x+ cos x)/√(sin x cos x)] = √2 \int dx [(sin x+ cos x)/√(sin 2x))] =2 \int dx [(sin x+ cos x)/√{1-(1-sin2 x)}] = 2 \int dx [(sin x+ cos x)/√{1-(sinx -cos x)^2}]. Let t-sin x - cos x . Then, dt = dx(sin x + cos x) and so I = √2 \int dt /√(i-t^2) = √2 arcsin t + C = √2 arcsin (sin x -cos x) + C. Thus, I = √2 arcsin (sin x -cos x) + C.

  • @michaeldoerr5810
    @michaeldoerr5810 Місяць тому

    This is honestly BETTER than the comments made. And I shall use that as a challenge. Juat to redeem myself of any doubts on doing calculus. And I think that I have understood it!!! I hope that thia means that I up for the challenge!!!