K Nearest Neighbour Easily Explained with Implementation

Поділитися
Вставка
  • Опубліковано 27 гру 2024

КОМЕНТАРІ • 94

  • @sahilvlogs5848
    @sahilvlogs5848 2 роки тому +1

    grt explanation my teacher took 2 days i didnt undersatand a word by watching this 18 min main done with knn thnku

  • @naveendubey2815
    @naveendubey2815 4 роки тому +1

    Excellent Krish...you are really giving a lot to the society..

  • @thomsondcruz
    @thomsondcruz 2 роки тому +1

    Excellent Video! 3:41 Euclidean Distance is nothing but Pythagoras theorem's way of calculating the hypotenuse

  • @87040256
    @87040256 2 роки тому +1

    Thank you so much! This is exactly what I need it.

  • @sharmakartikeya
    @sharmakartikeya 3 роки тому +5

    Thank you sir, KNN is pretty clear to me now !! : )

  • @VC-dm7jp
    @VC-dm7jp 3 роки тому +2

    Thank you so much for explaning the concept and code in such a friendly manner.

  • @tagoreji2143
    @tagoreji2143 2 роки тому

    this is what is needed, thank you so much sir

  • @kamran_desu
    @kamran_desu 4 роки тому +9

    Great explanation, just adding my thoughts here.
    @12:20, you've mentioned K=1 is underfitting. I think it's the other way around.
    Low K means highly flexible and jagged boundaries (low bias high variance) leading to overfitting.

    • @eduardomedina5081
      @eduardomedina5081 3 роки тому +1

      Good point

    • @KeigoEdits
      @KeigoEdits 2 роки тому

      Hey kamran do you got the point why he used 23 as k and why not 33 as it is giving the highest accuracy. Yeah i get the point of overfitting maybe thats why we didn't chose 33 but why 23 either..

  • @studio2038
    @studio2038 3 роки тому +1

    🙏nice video easy to understand

  • @manikaransingh3234
    @manikaransingh3234 4 роки тому +4

    I don't understand the idea of using KNN for a regression problem. For classification, it's fine: - There you know the location of the point (x and y value) and you have to predict it's category. picking up the five nearest points is understandable.
    But in a regression problem, you only know the x value of a point and you have to predict the Y value, If I'm not wrong here. In the video, you first plot the point and then pick 5 or some nearest points. But if you already know the location (x,y) of the point, what is the problem here? The mean of 5 neighbors distances gives you what? I'm guessing the Y value but if that is so then how will you pick k neighbors.
    Please Answer!

    • @krishnaik06
      @krishnaik06  4 роки тому

      For Knn regressorr u take the average of 5 nearest neighbour

    • @manikaransingh3234
      @manikaransingh3234 4 роки тому

      @@krishnaik06 I'm really sorry sir. But that doesn't answer my question.
      I understand you're busy and maybe couldn't go through the whole question.
      Please try to look at it once more and reply whenever you have time.
      Thanks!

    • @sathishs1756
      @sathishs1756 4 роки тому

      @@manikaransingh3234 Iam not sure exactly but according to lecture we should always select the k value as 5 the mean value 5 nearest neighbour value gives y value.

    • @manikaransingh3234
      @manikaransingh3234 4 роки тому

      @@sathishs1756 you too didn't understand my question.
      Okay,
      You say five neighbors, neighbors of which point?

    • @himabinduh7623
      @himabinduh7623 4 роки тому +1

      @manikaranasingh Same doubt here

  • @mallikharjunv6805
    @mallikharjunv6805 3 роки тому

    Thanks Krish. Good explanation..!

  • @Neerajkumar-xl9kx
    @Neerajkumar-xl9kx 3 роки тому

    great way of teaching by putting code and implementation

  • @raghuram6382
    @raghuram6382 3 роки тому +1

    @Krish Naik The dataset you explained here is a Regression problem right? then why have you used "KNearestClassifier" in the codes while importing from sklearn library? could you please tell me? Also why classification report is needed for a regression problem here?

  • @sairohithpasham
    @sairohithpasham 3 роки тому

    Thanks for giving a lucid explanation.

  • @chaitanyasrinevas8764
    @chaitanyasrinevas8764 3 роки тому +2

    In the error rate vs value of the K plot, shouldn't the value of K be around 37? At k=37, we are getting the least error. At this point, the error is less than 0.6?

  • @nileshkulkarni2845
    @nileshkulkarni2845 3 роки тому

    Very well explained sir. ..... Thanks a lot for making my concept clear

  • @gauravkumar2602
    @gauravkumar2602 3 роки тому

    Amazingly explained.Thanks a lot

  • @istech21
    @istech21 3 роки тому +1

    You did not mentioned which metrics is applied when test. Eucledian, Manhattan? sklearn library seems to be use minkowski by default.

  • @kushalhu7189
    @kushalhu7189 3 роки тому

    Perfectly explained

  • @sandipansarkar9211
    @sandipansarkar9211 4 роки тому

    Finished practicing in Jupyter notebook.Thanks

  • @manjunath.c2944
    @manjunath.c2944 5 років тому +1

    superb ..good job very much appreciated

  • @karalworld
    @karalworld 5 років тому +1

    Excellent work.. Done a good job.

  • @sandipansarkar9211
    @sandipansarkar9211 4 роки тому +7

    Superb explanation. Now just need to make my hands dirty in the Jupyter notebook.Thanks.

  • @louerleseigneur4532
    @louerleseigneur4532 3 роки тому

    Thanks Krish

  • @chetanmundhe8619
    @chetanmundhe8619 4 роки тому

    Very nice explaination, thank u for this video

  • @Subliminal001
    @Subliminal001 3 роки тому +1

    I didn't get why you took k=23 as in the accuracy plot, we can see that the accuracy is increasing after that point. We should take k value so as to maximize the accuracy, right?

    • @KeigoEdits
      @KeigoEdits 2 роки тому

      Same with me, did you got the point now?

  • @AdityaRaj-kl1be
    @AdityaRaj-kl1be 4 роки тому +13

    In this video, you told that your model will underfitting when k=1, but in this case model always go to overfitting when k is low
    but we increase the k then our model goes to underfitting .

    • @saisai-yo4nv
      @saisai-yo4nv 4 роки тому +2

      yeah i have the same doubt k=1 it will be overfitting and k=n it will be underfitting

    • @Sanki-04
      @Sanki-04 2 роки тому

      Yes

  • @shlokdoshi7162
    @shlokdoshi7162 2 роки тому

    If a give an input list for the KNN algorithm to predict the classes of each element, How can I print out the list of inputs only belonging to a particular class?

  • @subbareddyjangalapalli4708
    @subbareddyjangalapalli4708 4 роки тому +2

    Than you Krish, can we call all multiclass logit regressions are non-linear? please confirm or post small video. Thank you

  • @RaviSharma-tg6yx
    @RaviSharma-tg6yx 3 роки тому

    It this is also necessary to standardize the categorical variable in KNN to find the better K-value?

  • @pavankumargopidesu4730
    @pavankumargopidesu4730 5 років тому +1

    hi krish in what situations we can use KNN and logistic regression and what is the difference between them.

  • @shreyanshdubey8530
    @shreyanshdubey8530 4 роки тому +1

    Instead of standard scalar can't we use MinMaxScalar?

  • @aashishdagar3307
    @aashishdagar3307 4 роки тому +2

    Hi, Krish why not use k =33 it has min error and max accuracy instead of 23?

    • @mahindrarao4565
      @mahindrarao4565 3 роки тому

      It leads you to Overfitting. Too less training error is also not acceptable.

    • @aashishdagar3307
      @aashishdagar3307 3 роки тому

      I think we need to plot error rate for train vs CV then we have a better plot to look at,and decided to choose 23/33.
      If the gap between train and cv is less k=33 then k=23 then use k=23 ,otherwise 23 is good.

  • @hasnainalibohra8232
    @hasnainalibohra8232 2 роки тому +1

    Hello Sir for k=1 im getting overfitting data and as i increase the value of k the error rate is increasing. How to choose k value if the error graph is linear

  • @srinathakarur9798
    @srinathakarur9798 4 роки тому

    Thank u sir 4 ur logic.

  • @Charmingenby
    @Charmingenby 4 роки тому

    Hi Krish did u find error.rate (1-mean) becz u standardised the data points forehand; that part confuses me

  • @ashishgarg5186
    @ashishgarg5186 3 роки тому

    How does outlier effect knn??

  • @social_media789
    @social_media789 Рік тому

    how to find radius in knn ( in jupyter notebook with code )

  • @howdontanalytics6158
    @howdontanalytics6158 3 роки тому

    Can you tell me how I can choose variables for KNN? I have 20+ variables, and not sure how I would keep some of the variables with what criteria.

  • @kvsaipratap7697
    @kvsaipratap7697 5 років тому +4

    HI Sir thank you very much for your transfer of knowledge Can Please explain about concept of Weight of Evidence(WOE) and how it is used in classification algorthims

  • @HARSHRAJ-2023
    @HARSHRAJ-2023 5 років тому

    Hi Kris. Can you please share the link of video on imbalance dataset.

  • @shreyanshsahay
    @shreyanshsahay 4 роки тому

    Hi Krish Why we didnt take sqrt of datapoints to calculate K?

  • @sajidurrehman89
    @sajidurrehman89 4 роки тому +1

    why we need training if we just calculate distance from points in testing ? What exactly is done in training phase if we just classify points based on distance ?

    • @adipurnomo5683
      @adipurnomo5683 3 роки тому

      KNN does not have training phase.

    • @QasimKhan-nd8og
      @QasimKhan-nd8og 3 роки тому

      Internally, KNN uses a tree data structure to sort feature vectors so that it does not have to search the entire training set for finding nearest neighbors. This data structure is generated during training

  • @ablearing4927
    @ablearing4927 4 роки тому

    Hi Krish, I am trying to learn about algorithms which can be used for text base analysis. Could you please advise?

  • @eugeneliu1212
    @eugeneliu1212 3 роки тому

    If K is 4, and there are 2 2 equal distribution, what would be the classification?

  • @unezkazi4349
    @unezkazi4349 3 роки тому

    How does it train itself on the data?

  • @roopagaur8834
    @roopagaur8834 5 років тому

    Thank you so much ....!!! It's really nice explanation.

  • @SpiritedTravellerr
    @SpiritedTravellerr 3 роки тому

    sir I have gone through ML playlist and some videos are not according to step by step after 50 th video so can you check it again please. bcz some videos are interchange up down

  • @xinyuanliu1959
    @xinyuanliu1959 4 роки тому

    I don't understand why to choose k=5 while later in the video it chooses 23?

    • @manikaransingh3234
      @manikaransingh3234 4 роки тому

      choosing k=5 is just for reference it's like just another example. You have to pick the best value of k for which the final error is minimum. The value of k will basically depend on the dataset points.

  • @azharshaik21
    @azharshaik21 5 років тому +1

    Could you please briefly explain about euclidean and Manhattan distance

  • @surendratadakaluru8900
    @surendratadakaluru8900 5 років тому

    Why we take k=5,
    We can take any other value or not

  • @pabitrakumarghorai7623
    @pabitrakumarghorai7623 4 роки тому +2

    I do not understand why you take k nearest neighbors as 23?
    pls reply me sir...

    • @lalitchaudhari7470
      @lalitchaudhari7470 4 роки тому

      Refer following video buddy,
      ua-cam.com/video/otolSnbanQk/v-deo.html

    • @manikantamaka7910
      @manikantamaka7910 4 роки тому

      we are choosing k by seeing the graph
      , on x axis "k", y axis error rate. so like that k is 23

  • @siddheshpawar1441
    @siddheshpawar1441 5 років тому +1

    thank you sir
    great explanation
    sir can you make one video on yolo algorithm?

  • @awesomeak7083
    @awesomeak7083 4 роки тому

    Great

  • @helenhilamariam3149
    @helenhilamariam3149 4 роки тому

    Hello sir would you please explain about Nearest Neighbour Algorithms
    for Forecasting Call Arrivals in Call Centers article

  • @iftikhar3609
    @iftikhar3609 3 роки тому

    Sir DO you have any discord or slack community if yes please share it here i would like to join your community.

  • @anandprasadcc0967
    @anandprasadcc0967 4 роки тому

    Thankyou sir :)

  • @kavyasharma5540
    @kavyasharma5540 4 роки тому

    Where is the link to this kaggle code

  • @abhiyujaiswal7579
    @abhiyujaiswal7579 5 років тому

    Impressive ! Nice Clarification..

  • @shubhamsahu943
    @shubhamsahu943 4 роки тому

    sir what is the name of this data set on kaggle

  • @sindhumathi9209
    @sindhumathi9209 3 роки тому

    I have started learning about Data Modelling and ML. My doubt is K-Nearest Neighbour will come under classification algorithm which is type of supervised learning. But here it is explained with regression also. Can anyone help me to understand!

    • @codermafia3441
      @codermafia3441 2 роки тому

      It works for both classification as well as regression problem. And it comes under supervised machine learning.But in real data scinario KNN mostly used for classification problems.

  • @yijunshen9287
    @yijunshen9287 3 роки тому

    best comparing other resources !!!!!!!!!!!

  • @shreeshanayak187
    @shreeshanayak187 6 місяців тому

    Can u please provide ppt

  • @madhabipatra8973
    @madhabipatra8973 3 роки тому

    PLEASE HELP ME TO FIND OUT ML TUTORIAL -44

  • @dragolov
    @dragolov 3 роки тому

    These are 2 musical (jazz) solos generated using K Nearest Neighbor classifier:
    ua-cam.com/video/zt3oZ1U5ADo/v-deo.html
    ua-cam.com/video/Shetz_3KWks/v-deo.html

  • @arunkumarr6660
    @arunkumarr6660 5 років тому

    could see kadhal vandhale sonf from your bookmarks !!! hah hah ...nice song though

  • @atifroome
    @atifroome 3 роки тому

    Hue = hoie 😀

  • @solomongift951
    @solomongift951 4 роки тому +1

    Wa.kn was.pkw

  • @sarthakbhatnagar961
    @sarthakbhatnagar961 4 роки тому

    go corona corona go!!

  • @louerleseigneur4532
    @louerleseigneur4532 3 роки тому

    Thanks Krish