Find all Real Solutions

Поділитися
Вставка
  • Опубліковано 11 чер 2024
  • We find all real solutions x_{1}, ... x_{10} to the equation sqrt{x_{1}^{2} + ... + x_{10}^{2}} = cbrt{x_{1}^{3} + ... + x_{10}^{3}}. The solution involves some satisfying algebra.
    00:00 First steps
    00:44 Simultaneous equations
    03:53 Positive and negative terms
    06:26 Finding solutions

КОМЕНТАРІ • 35

  • @nathanisbored
    @nathanisbored 6 місяців тому +18

    in other words, the original equation has no solutions except for the trivial case where everything disappears down to a monomial and you can just cancel out the radicals

  • @JohannNeumann-ic3gy
    @JohannNeumann-ic3gy 6 місяців тому +4

    Nice! Another upload

  • @lf506
    @lf506 6 місяців тому +3

    the final description of the structure of the solutions could be made slightly more concise using the kronecker delta, i.e. x_i = a d(i, j) = a if i == j, 0 else where j is the index of the non-zero term in the 10-tuple and i is free
    excellent video

  • @zathrasyes1287
    @zathrasyes1287 6 місяців тому +1

    Very cool!

  • @samueldeandrade8535
    @samueldeandrade8535 6 місяців тому +1

    It would be more elegant to make the difference of equations B - A, getting (a-x_i) in the terms, and simply noticing that such binomials must be greater than zero and so each term (x_i)²(a-x_i) must be zero.

  • @Happy_Abe
    @Happy_Abe 6 місяців тому +2

    We could generalize this to any number of terms right?
    Nothing here was specific to 10

    • @matze9713
      @matze9713 6 місяців тому +1

      I just checked for 11 terms. Still works.

    • @Happy_Abe
      @Happy_Abe 6 місяців тому

      @@matze9713 yeah you can inductively do this for all n
      I’m thinking of if this would work too for infinite series case
      I believe it still would

    • @adriamaychum1387
      @adriamaychum1387 6 місяців тому

      I haven't done it or proved it, but I guess it should work cause this is actually a case of equations of the type ||x||_p = ||x||_q for x \in R^n and 1

    • @DrBarker
      @DrBarker  6 місяців тому +2

      Yes, this will definitely work with the exact same argument for any finite number of terms x_1, ... , x_n.

    • @Happy_Abe
      @Happy_Abe 6 місяців тому

      @@DrBarker the infinite series case too?

  • @holyshit922
    @holyshit922 6 місяців тому

    Could you record video how to calculate the sum
    sum(binomial(n,2k)*binomial(k,m),k=m..floor(n/2))
    I have the correct result but guy who gave it to me doesn't want to share with me how he has got it
    Result of sum proposed by me is s_{n,m} = (binomial(n-m,n-2m) + binomial(n-m-1,n-2m))*2^{n-2m-1}
    but i don't know how to get this result

  • @GeoffryGifari
    @GeoffryGifari 6 місяців тому +2

    So the solution works for any nonnegative real number a?

    • @samueldeandrade8535
      @samueldeandrade8535 6 місяців тому +1

      What do you mean? The solutions are 10-tuples of the form (0, 0, ... , a, ..., 0, 0), with "a" being a nonnegative real number ("a" can assume any position).

    • @samueldeandrade8535
      @samueldeandrade8535 6 місяців тому +1

      In other words, the set of solutions is the nonnegative parts of the coordinate axes in R¹⁰.

    • @GeoffryGifari
      @GeoffryGifari 6 місяців тому

      @@samueldeandrade8535 Yes this answers it.

  • @tomctutor
    @tomctutor 6 місяців тому +3

    Good in the Reals, now how about complex solutions!

    • @DrBarker
      @DrBarker  6 місяців тому +7

      For example (1, -1, i, -i, 0, 0, 0, 0, 0, 0) works, and we should get a lot more possible solutions too. Not sure how we could find all of the complex solutions though, or if there's even a nice solution to this.

  • @worldnotworld
    @worldnotworld 6 місяців тому

    Don't understand the a>=0 restriction at the beginning. Square roots have two values, in this case one positive and one negative, no?

    • @vangrails
      @vangrails 6 місяців тому

      No, a square root is always bigger or equal to zero.

    • @worldnotworld
      @worldnotworld 6 місяців тому

      @@vangrails So the square root of -1 is...?

    • @gametimewitharyan6665
      @gametimewitharyan6665 2 місяці тому

      ​@@worldnotworld For any positive real numbers x, there does exist two square roots of x which are +√x and -√x
      But when we use the √x symbol, we mean the "principal square root" of x
      This principal square root is DEFINED to always be the postive square root of the number x
      This is convenient because we can multiply the principal square root of a number by -1 to get the negative square root of the number
      You can read more about this on Maths Stackexchange or Wikipedia

    • @gametimewitharyan6665
      @gametimewitharyan6665 2 місяці тому

      ​@@worldnotworld The √-1 is an imaginary number i, it does not lie on the real number line hence it is neither negative nor positive, it is imaginary

    • @worldnotworld
      @worldnotworld 2 місяці тому

      @@gametimewitharyan6665 That's right; it doesn't answer my question though: why is it asserted at the beginning that a must be positive or equal to zero?