Beautiful determinant ?

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 30

  • @jonasdaverio9369
    @jonasdaverio9369 5 років тому +20

    The columns are linearly dependant, so the determinant is 0

  • @aram9167
    @aram9167 5 років тому +12

    You could also substract lines/columns to get 4 "11111" rows/columns and get 0 as det.

  • @rauldominguez925
    @rauldominguez925 5 років тому

    Its great that you upload this determinant videos, because in college in seeing this actually! Keep it up Dr Peyam!

  • @MathNerd1729
    @MathNerd1729 5 років тому +1

    One mathematical meme mad-lad:
    "We have better stuff to do. Ain't nobody got time for that"
    Great vid!

  • @darcash1738
    @darcash1738 Рік тому

    What was the beginning step of multiplication of x-2 and x-3? How does this work or what is this called so I can find why this is done?

  • @i_deepeshmeena
    @i_deepeshmeena 5 років тому +1

    Peyam: Alright thanks for watching
    Me: But I haven't watched the video yet

  • @doria_bolognese
    @doria_bolognese 5 років тому +1

    I love ur teaching ! Is there any video about dual space in future? :p

    • @drpeyam
      @drpeyam  5 років тому

      In a couple of months

  • @MA-bm9jz
    @MA-bm9jz 5 років тому

    Or you could add all lines to the first and you would get 1+2+3+4+5 on the first line,then just factor them and you would only have 1 s on the first line,make them 0 and you would get a 4x4

  • @nikhilgupte6254
    @nikhilgupte6254 5 років тому +5

    R5-R4 , R3-R4
    2 rows same so zero
    1st comment

  • @MrRyanroberson1
    @MrRyanroberson1 5 років тому

    of course i'd start by subtracting the first row once from everything else, and then the second row X many times from all the rest to get [(1,2,3,4,5),(1,1,1,1,1),zero,zero,zero] it's as beautiful a reduction as the matrix

  • @joluju2375
    @joluju2375 5 років тому

    Does it have something to do with the det being "symmetric", ie equal to its transposed, or just a coincidence ?

    • @drpeyam
      @drpeyam  5 років тому

      Just a coincidence :)

  • @blackpenredpen
    @blackpenredpen 5 років тому +2

    Hahahahaha, I love this one!

  • @joaofernandes8051
    @joaofernandes8051 5 років тому

    Haha! Thanks for the video, it is one of the few videos I understand 100% :P
    Hugs from Brazil

  • @ektadhankhar
    @ektadhankhar Рік тому

    Nice explantion sir

  • @brecboreturn
    @brecboreturn 5 років тому

    What is the Jordan form for this?

    • @drpeyam
      @drpeyam  5 років тому

      Good question, haha! Definitely an eigenvalue of 0 somewhere

  • @julien31415
    @julien31415 5 років тому

    Why matrix are not inversible when have two same line ?

    • @i_deepeshmeena
      @i_deepeshmeena 5 років тому +1

      because it results in the determinant being 0 thus not invertible

    • @abaundwal
      @abaundwal 5 років тому +1

      Because inverse of A = {1/|A|}{adjoint of A}
      Now if two rows are identical, then |A| (or determinant of A) would be zero and inverse of A would not be defined.

  • @MajaxPlop
    @MajaxPlop 5 років тому

    C2 - C1 + C3 = C4
    The determinant is equal to 0
    Thanks goodbye !

  • @uwadiegwuemmanuel8809
    @uwadiegwuemmanuel8809 Рік тому

    Thanks

  • @shandyverdyo7688
    @shandyverdyo7688 5 років тому

    Upload the next for Gaussian Integral
    Please, Dr. πm 😍😄

  • @newtonnewtonnewton1587
    @newtonnewtonnewton1587 5 років тому

    Wow realy beautiful det.D peyam