Vandermonde Determinant

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 33

  • @ssdd9911
    @ssdd9911 5 років тому +25

    11:27 shouldn't it be t-z?

    • @drpeyam
      @drpeyam  5 років тому +6

      Yep

    • @yaaryany
      @yaaryany 5 років тому +5

      How is your comment 1 week older if the video has been published just a few minutes ago?

    • @gesucristo0
      @gesucristo0 5 років тому

      @@yaaryany the video was prolly unlisted

    • @yaaryany
      @yaaryany 5 років тому

      @@gesucristo0 oh I see

    • @danielsavinir3769
      @danielsavinir3769 Рік тому +1

      yes

  • @newtonnewtonnewton1587
    @newtonnewtonnewton1587 5 років тому +5

    God bless u Dr peyam i am jamal a math teacher from palestine

  • @phoebeferguson5144
    @phoebeferguson5144 3 роки тому +3

    Thanks Dr. Peyam, I loved your enthusiasm! Makes math extra fun to see someone excited to teach :)

  • @Alex-li3xh
    @Alex-li3xh 5 років тому +4

    Dr.peyam,thank you for your explanation❤,you explain very well,have a nice day!

  • @stydras3380
    @stydras3380 5 років тому +4

    Hey, that was one of my assignments! :D

  • @Aviationlover-belugaxl
    @Aviationlover-belugaxl 5 років тому +1

    You can actually use row/collum reduction to find the determinant of a 3x2 matrix(3x2 meaning 2d space as the input and 3d space as the output).

  • @shiina_mahiru_9067
    @shiina_mahiru_9067 5 років тому

    good! but the most natural way to find the determinant is to realize that if we do a substitution, we can get 0 determinant, namely x→y, x→z, x→t, y→z, y→t, or z→t. Since you get 0 determinant after the substitution, you must have the original determinant in the form P(x-y)(x-z)(x-t)(y-z)(y-t)(z-t), and P has to be a constant for the degree must be 6, and P has to be 1 (or -1, if you manage to flip some order of subtraction) by using term comparison

    • @drpeyam
      @drpeyam  5 років тому +1

      That’s the cool way I did in the first Vandermonde video (the one with 14k views)

  • @Rockyzach88
    @Rockyzach88 3 роки тому +1

    I don't care if it's trivial or obvious, where did the first row and column go?

    • @Aka_shsin_hA
      @Aka_shsin_hA 10 місяців тому

      It vanished as we do determinant along coloumn 1 !

  • @roshanpoudel5140
    @roshanpoudel5140 5 років тому +1

    Wow you've helped me learn a nice concept...thanks so much

  • @sandorszabo2470
    @sandorszabo2470 5 років тому +2

    Here is the proof what you mentioned when I asked about the "usual proof". Thanks! (My taste in linear algebra is very similar to yours. Maybe we learnt from the same book :-) )

  • @tylershepard4269
    @tylershepard4269 5 років тому +1

    I wonder what this sort of thing would be used for. Perhaps a discrete Fourier transform?

    • @drpeyam
      @drpeyam  5 років тому +1

      It’s used to show that there is a nth degree polynomial going through n points

  • @rajatchopra5829
    @rajatchopra5829 3 роки тому

    Very nice explanation👌

  • @juandeluna2652
    @juandeluna2652 5 років тому

    Thanks for your nice tutoring, greetings dear Dr Peyam, the best to you.

  • @i_deepeshmeena
    @i_deepeshmeena 5 років тому

    is it determinant but when you are taking common you are taking it as we do in a matrix what I want to say is when we multiply a determinant is multiply by a scalar we only multiply it to a single row but in the matrix we multiply it to all the rows

  • @pianoforte17xx48
    @pianoforte17xx48 3 роки тому

    Now how to find the adjoint of vandermonde :(

  • @ilya-koloshin
    @ilya-koloshin Рік тому

    Thank you so much!

  • @edwardhuff4727
    @edwardhuff4727 5 років тому

    Wolfram Alpha: Input
    Factor[ Det[{ {1,x,x^2,x^3}, {1,y,y^2,y^3}, {1,z,z^2,z^3}, {1,t,t^2,t^3} }]]
    Output
    -(t - x) (t - y) (t - z) (x - y) (x - z) (y - z)

  • @1willFALL
    @1willFALL 5 років тому

    You should make some miscellaneous vids on how the Jacobian and linear algebra mix, as well as the covariance matrix and its properties. Also if you can, some videos on Numerical methods involving systems of linear equations like Gauss-Seidel etc. Thanks!

    • @drpeyam
      @drpeyam  5 років тому

      There are 2-3 videos on the Jacobian where I explain that

  • @danielmilyutin9914
    @danielmilyutin9914 5 років тому +1

    I wonder if Voldemort determinant will be invented someday :)

    • @cobalius
      @cobalius 4 роки тому

      And i wanna see glass numbers

  • @carlosvargas2907
    @carlosvargas2907 5 років тому

    Nice

  • @qubix27
    @qubix27 5 років тому +1

    Hm, why am I having a deja vu?

    • @drpeyam
      @drpeyam  5 років тому +2

      I presented a different proof a year ago