Integrating by Weierstrass Substitution (visual proof)

Поділитися
Вставка
  • Опубліковано 29 лис 2024

КОМЕНТАРІ • 46

  • @jakobthomsen1595
    @jakobthomsen1595 9 місяців тому +17

    Very good visualization of a very elegant mathematical technique!

    • @MathVisualProofs
      @MathVisualProofs  9 місяців тому +1

      Glad you liked it! Thanks!

    • @leif1075
      @leif1075 9 місяців тому

      ​​@MathVisualProofs WHAT wouldn't you agree I don't SEE ANYONE thinking of this substitution,no matter how smart theybare..wouldn't you agree? It's random or contrived and out of nowhere..Hope to hear from you.

  • @catmacopter8545
    @catmacopter8545 9 місяців тому +13

    I learned about this substitution recently but this really explains the why! Thank you for your videos :)

  • @EvilSandwich
    @EvilSandwich 9 місяців тому +8

    What's insane about this is that this is also virtually identical to how you can prove the Sum/Difference Formulas for Sine and Cosine.

    • @MathVisualProofs
      @MathVisualProofs  9 місяців тому +1

      Yes. I have that version in the works. If you check my channel you will see how many diagrams get repurposed for different results. This one shows up a few times. 😀

    • @EvilSandwich
      @EvilSandwich 9 місяців тому +1

      @@MathVisualProofs Thats the coolest thing about math. So many seemingly unrelated things just keep unexpectedly tying together in weird and magical ways.

    • @leif1075
      @leif1075 9 місяців тому

      ​@@EvilSandwichuea but math an also be reslly dumb and contrived and infuriating, all due respect..and isn't this an example of that..this just comes from contrivance not from intelligence right?

    • @samueldeandrade8535
      @samueldeandrade8535 9 місяців тому +1

      ​@@leif1075 what are you talking about?

    • @EvilSandwich
      @EvilSandwich 9 місяців тому +1

      ​​​@@leif1075Math, at it's core, is a tool used to examine the world in a more easily digestible way. And the streamlining of observation that it enables can sometimes reveal connections to other topics that weren't always apparent with all that messy reality in the way.
      So it's less a contrivance, and more just adding some clarity.
      Akin to finding a connection between two separate cultures that you didn't notice before you examined the grammar of both their languages.

  • @shivanshnigam4015
    @shivanshnigam4015 9 місяців тому +3

    Alt method: multiply divide by (1-(sinx+cosx))

  • @glynnec2008
    @glynnec2008 8 місяців тому +2

    Interesting video. Previously I've seen Weierstrass substitution explained using the inscribed angle (x/2) versus the central angle (x) on a unit circle.

  • @bjoernschermbach3957
    @bjoernschermbach3957 4 місяці тому +1

    I've been trying to memorise the identities for a while and now I can derive them reasonably quickly, that's so helpful!

  • @adarshpradhan3554
    @adarshpradhan3554 9 місяців тому +7

    Bro that's amazing fr❤

  • @Zana-iv9gp
    @Zana-iv9gp 9 місяців тому +1

    Visual proof helps alot to understand it ,Thanks!

  • @yplayergames7934
    @yplayergames7934 9 місяців тому +2

    HOOOOOLYYYYY, this is aweeeesome, very nice job, now i understand it well

  • @mekbebtamrat817
    @mekbebtamrat817 9 місяців тому +5

    Nice!

  • @shivanshnigam4015
    @shivanshnigam4015 9 місяців тому +1

    Example is any linear combination of sines and cosines can be integrated like this

  • @wryanihad
    @wryanihad 9 місяців тому +4

    Amazing techniq

  • @33arsenic75
    @33arsenic75 9 місяців тому +2

    Amazing 🔥

  • @Sunjidulsifat007
    @Sunjidulsifat007 9 місяців тому +1

    Great visualization 😮

  • @patrickt.4121
    @patrickt.4121 9 місяців тому +1

    awesome! thanks!

  • @alanthayer8797
    @alanthayer8797 9 місяців тому +1

    KEEP DOIN ya thang I WATCH ALL ya videos ! Thanks for Visuals 😊

  • @thomasolson7447
    @thomasolson7447 8 місяців тому

    A:= (x,y,n) -> [[x,y], [-y, x]]^n
    B:=[1,0]
    B.A(1,z,2)=[1-z^2, 2*z]
    C:=(x,y,n) -> (x+i*y)^n
    C(1,z,2) = 1-z^2+i*2*z
    I call A the rotation matrix. Everyone tells me I'm wrong. I'm ok with being wrong. It is rotating by the angle [x, y] forms with [1,0]. The length is sqrt(x^2+y^2)^n. There is an ellipse that has a similar algebra. Both algebras are used in Mandelbrot Sets. I suppose it can also be called a translation matrix.

  • @YoungPhysicistsClub1729
    @YoungPhysicistsClub1729 8 місяців тому +1

    if you scale the sides by z, won't the sides become lerger as ooposed to smaller? could you pls explain this to me

  • @pranshukrishna5105
    @pranshukrishna5105 6 місяців тому

    why can't you solve by multiplying both sides 1 + sinx - cosx

  • @williambusson3944
    @williambusson3944 6 місяців тому

    you could try doing the intergrale of dx/((2-x)(1-x^2)^1/2) please

    • @joserubenalcarazmorinigo9540
      @joserubenalcarazmorinigo9540 3 місяці тому

      Para empezar, hacer Sustitución Trigonométrica x = sen t.
      Luego la Sustitución Trigonométrica Universal
      Otro método es usar la Sustitución Inversa haciendo
      t = 1 / (2 - x)

  • @antoniodamianvargasmoreno
    @antoniodamianvargasmoreno 9 місяців тому

    Ok ...

  • @337호끼리
    @337호끼리 9 місяців тому +1

    Die Kunst!

  • @hydropage2855
    @hydropage2855 8 місяців тому

    Hah here in India you should this vido to high school student and he will first be doing the laughter on you because then he will solve this in the next minutes because he was taught this technique when born. Ha

    • @David-sj4fk
      @David-sj4fk 7 місяців тому

      This is incomprehensible.

    • @hydropage2855
      @hydropage2855 7 місяців тому

      @@David-sj4fk I’m making fun of them