Laplace transform of the dirac delta function | Laplace transform | Khan Academy

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ • 117

  • @AlexanderAV
    @AlexanderAV 14 років тому +26

    You are amazing! Most profs these days just read off slides or mumble to themselves as they write down things without explaining anything.
    As opposed to you, who speaks clearly and actually explains every single aspect =D Thanks!

    • @sitting_chair4962
      @sitting_chair4962 8 місяців тому +1

      "profs these days" written 13 years ago, I'm dead.

  • @SayanGHD
    @SayanGHD 7 років тому +35

    "Don't judge me by the straightness of my axes" made my day !

  • @yagiztr1
    @yagiztr1 8 років тому +3

    fourth time getting the differantial class, first time understanding. thanks!

  • @reypope19
    @reypope19 13 років тому

    saved my life. studying for my Diff Eq final tomorrow at UFlorida. big portion will be on the dirac delta, step, periodic functions' laplace transforms and convolation.

  • @hanxia9862
    @hanxia9862 5 років тому

    I spent 2 hours trying to figure out how to find the Laplace Transform with the sifting property of the delta function. Thank you!

  • @gensvitux
    @gensvitux 9 років тому +14

    There's a tiny error in the last yellow expression where you wrote delta{ } instead of L{ }

  • @amaypatel276
    @amaypatel276 7 років тому +6

    Khan academy is great...👍👍👍

  • @amyy5141
    @amyy5141 Рік тому +1

    Just like wow😅... amazing teaching.. you were really ahead of time sir

  • @quadrinhosmonica2735
    @quadrinhosmonica2735 6 років тому +1

    Because t means time in the context of the Dirac Delta function, you can evaluate the improper integral from 0 to (infinity), instead of (- infinity) to (infinity), since there is no such thing as "negative time"*
    *As I'm saying this in 2018 I really hope some future physicists don't come up with negative time.

  • @AbbyShumate
    @AbbyShumate Місяць тому

    my diff eq teacher gave us an equation with a delta function and refused to explain what it is. this saved my life

  • @embarrassingstain
    @embarrassingstain 12 років тому

    Best explanation of the sifting property of the delta function I've ever seen!

  • @shahidullahkaiser1159
    @shahidullahkaiser1159 8 років тому

    Just when i'd given up hope of understanding these things, I came across this video. You're a godsend. Thank you. :)

  • @pseudohominom
    @pseudohominom 11 років тому +4

    Wow, I love the way math can do anything. And I love the way you explain things. your use of colors really helps.

  • @izaish7981
    @izaish7981 4 роки тому +1

    Its like sal learned to teach at khan academy. He nails it!

  • @shehryaramin1481
    @shehryaramin1481 4 роки тому

    Best Demonstration till now....!
    Hats Off!

  • @mejdbaba
    @mejdbaba 11 років тому +1

    Thank you so much for this wonderful video. Now, I know what Dirac delta function is.

  • @AmirRastpour
    @AmirRastpour 13 років тому +2

    It was great.
    I have a non-mathematical question! Could you please let me know what is the brand and model of the optical pen you are using?

  • @nucspartan321
    @nucspartan321 6 років тому

    god bless your intuition Khan. Don't memorize, understand.

  • @sipoVvids
    @sipoVvids 2 роки тому

    One of the most useful explanations I've seen. Thank you

  • @shazaduh
    @shazaduh 15 років тому

    very nice video, I like the way how you break down the integral and gave intuition.

  • @chilly_29sl68
    @chilly_29sl68 12 років тому

    excellent teaching !!! i don't think it can be clearer than that!

  • @manderina16
    @manderina16 11 років тому +1

    i can hear you in my head when im doing math questions lol
    thank you for your videos

  • @johnlie8586
    @johnlie8586 5 років тому

    Khan is really Khan.
    Many thanks khan.

  • @lekanadenusi462
    @lekanadenusi462 Рік тому

    This was very enlightening. Thank you!

  • @lengua79
    @lengua79 14 років тому

    thanks a lot, now Dirac delta function is not a mistery anymore !!

  • @blacksilkblacksilk
    @blacksilkblacksilk 15 років тому +1

    Dear colleague, where have you been back in the days when I had to crunch through my quantum mechanics lessons?
    I do not know if you get much feedback, but let me assure you I enjoy your lessons tremendously, and I see a great usefulness in what you do. First anyone can run and re-run - which you cannot do with an actual professor. Second, your way of explaining things makes it clear what`s going on even if a rock listens.
    And to think that I always dreamed of a source like this ...

  • @elit8888
    @elit8888 8 років тому +3

    So funny and very easy to understand, thanks!

  • @ez910503
    @ez910503 13 років тому

    @runninriot15 I think it's not so much an issue with negative time as with the definition of Laplace transform. The dirac delta function could very well be applied to positions or (as you said) relative time frames, but it is mathematically meaningless to consider the Laplace transform of a function for t < 0, because the Laplace transform is defined only from t = 0 to t = infinity.
    Thank you Sal for this wonderful intuitive proof of a difficult concept. I owe you lots!

  • @sahdevchavda7820
    @sahdevchavda7820 8 років тому

    I am highly thankful to you Sir.

  • @abdulmusawwir8603
    @abdulmusawwir8603 6 років тому

    Excellent demonstration👍

  • @baruahsarthak_
    @baruahsarthak_ Рік тому

    Superb explanation!

  • @sireggsable
    @sireggsable 9 років тому +1

    At 11:27 he writes a delta symbol where it should be a Laplace symbol. Good video though.

  • @robertoberidojr.435
    @robertoberidojr.435 3 роки тому

    This is the most beautiful thing I've seen today

  • @birdtweet1
    @birdtweet1 2 роки тому

    Absolutely brilliant

  • @shadow_navneet
    @shadow_navneet 11 місяців тому

    tomorrow is my exam and this is so helpful

  • @guilhermecarvalho2023
    @guilhermecarvalho2023 8 років тому

    Thank you so much Sal...

  • @quitest4850
    @quitest4850 4 роки тому

    thank you this is easy to understand

  • @asif7240
    @asif7240 Рік тому

    Thank you!

  • @bolbteppa
    @bolbteppa 15 років тому

    One torus-shaped mug , two hypercubes of sugar and a nice Fourier wave caused by the ripples as they splash in make any cup of coffee worth drinking in the wee-early/late/crazy hours of any day(:

  • @yellowmoe
    @yellowmoe 15 років тому

    kinda sad you didn't make these videos last year, might have saved my failing grade

  • @blacksilkblacksilk
    @blacksilkblacksilk 15 років тому

    ... in the dark hours between three o clock in the morning and dawn, living on coffee and equations alone.
    If that sounded a bit enthusiastic, it is because I am.
    Very good vids. Thanks so much for posting.
    Have an especially nice day
    silk
    ;-))

    • @an_orange8911
      @an_orange8911 6 років тому

      here! have a comment after 8 years plus a like too.

  • @bethtubechika
    @bethtubechika 15 років тому

    wao another cracking good video. thanks alot

  • @georgepp98
    @georgepp98 4 роки тому

    God bless you!

  • @CarnageBoy1
    @CarnageBoy1 11 років тому

    i hope this helps in my tomorrow's exam

  • @kwprice12
    @kwprice12 6 років тому

    VERY WELL STATED

  • @wojtek_js
    @wojtek_js 10 років тому

    I understand how you did it visually but I was just wondering if there was any way to solve that integral analytically? As in by just numbers, without drawing te functions?

  • @billy4958
    @billy4958 7 років тому

    thank you sir

  • @CrispyCyclicCenk
    @CrispyCyclicCenk 11 років тому

    thank you so much

  • @baden300
    @baden300 10 років тому +5

    "the plain, vanilla delta function"

  • @dillongatesanw
    @dillongatesanw 12 років тому +1

    do not judge me by the straightness of my axis

  • @ramseycdavid
    @ramseycdavid 9 років тому +2

    Isn't the integral of the Dirac delta function equal to 1 when evaluated from -infinity to +infinity. So wouldn't the integral be roughly 1/2 when evaluated from 0 to infinity? +KhanAcademy

    • @prohiprohi
      @prohiprohi 9 років тому +1

      ramseycdavid no, because it only has "area" under where t=c, and he did this for c>0, so if t

    • @lsbrother
      @lsbrother 9 років тому

      +ramseycdavid Integral of Dirac delta(x-c) dx is 1 as long as the integral range includes the point c - anywhere else is zero by definition so doesn't matter whether you include it or not!

    • @p12psicop
      @p12psicop 7 років тому

      I was thinking the same thing. =)

    • @m.haseebshahzad9058
      @m.haseebshahzad9058 7 років тому

      No, because c is positive it it could be negative then we can say this

  • @nikitasdev9843
    @nikitasdev9843 6 років тому

    awesome!

  • @MisterAadj
    @MisterAadj 8 років тому

    thanks

  • @يوسفالبطراوي-ث5ق

    Master❤

  • @Whattheugi
    @Whattheugi 11 років тому

    I was doing some googling on this function and friend that it's integral is the function sign(x). Could someone explain this?

  • @usman5954
    @usman5954 5 років тому

    👍👍👍

  • @talhairfan9444
    @talhairfan9444 7 років тому

    He said that we draw an arrow over the Dirac Delta Function with HEIGHT = 1 to show that its area is 1. How does it makes sense? Isn't the base very small (or an epsilon), so how will multiplying by a height of 1 will give an area of 1?

  • @phalgunvedantam1388
    @phalgunvedantam1388 6 років тому +1

    "Dont judge me by the straightness of my axes" - Sal Khan

  • @n00bkill
    @n00bkill 15 років тому

    Thankyou Sal from University of Surrey.
    I will donate to your website If I manage to get a decent grade in Maths this year. You saved me from failing last year!

  • @lsbrother
    @lsbrother 9 років тому

    This was so long-winded after about 2:00 that it almost got confused.
    Should have demonstrated the property of integrating Dirac delta with any function. The result with Laplace fn then follows easily.

  • @raozubair2653
    @raozubair2653 4 роки тому

    Chaa gia hai jaani Ly

  • @runninriot15
    @runninriot15 13 років тому

    i know it's not intuitively true but:
    what if your c is negative, then your integral from 0 to inf would not cover it.
    but i guess negative time doesn't make sense either, unless you're talking in different reference frames

    • @anonywamy
      @anonywamy 2 роки тому

      i know your comment is from 11 years ago, but i'll answer anyway haha. your question is very great!! if c was negative (which it can be), then the integral from 0 to infinity would be 0. the area is 1 (scaled however) only when c is within the limits of integration

  • @Macranius
    @Macranius 13 років тому

    @Macranius By the way, this was really usefull for me

  • @m.haseebshahzad9058
    @m.haseebshahzad9058 7 років тому

    S is variable how it can be taken out from integration?

  • @aravindan7422
    @aravindan7422 4 роки тому

    god creating me : 5:37

  • @dwx
    @dwx 13 років тому

    i found that much more than "reasonable useful" ^_^

  • @lisinka3
    @lisinka3 15 років тому

    I think all mathematicians do.
    A mathematician is a device for turning coffee into theorems. -Paul Erdos

  • @ddg-norysq1464
    @ddg-norysq1464 3 роки тому

    if c = -1 for delta(t-c) then the laplace transform isn't e^-sc but 0 right? or am i wrong here? I thought of that because delta(t-c) would be 0 on the entire positive side, so you basically calculate just the integral of 0dt

  • @Pfiver
    @Pfiver 13 років тому

    Very . good ! - Thank . you . so . much ! :-)

  • @iratelyblank
    @iratelyblank 13 років тому

    @shrikant96 I think he studied electrical engineering and something else at MIT

  • @aravindgopal3555
    @aravindgopal3555 2 роки тому

    At 11.16 how is f(c) at c = 0 , i.e. f(0) = 1?

  • @bolbteppa
    @bolbteppa 15 років тому

    I know the feeling... (:

  • @홍길동-z3l8f
    @홍길동-z3l8f 6 років тому +1

    부디 한글 자막좀 ...ㅠㅠ

  • @muratkar8753
    @muratkar8753 7 років тому

    How did you get 1 in 1:22

    • @monalesk8
      @monalesk8 7 років тому

      Take a look at the last video where he introduces the Dirac delta function, there he makes an intuitive proof of that area of 1 ( ua-cam.com/video/4qfdCwys2ew/v-deo.html )

  • @313mando
    @313mando 13 років тому

    @khan : all i wanna know is.....where did you study?!??

  • @Macranius
    @Macranius 12 років тому

    it says detla: T before L, watch carefully the video again

  • @HeXicn
    @HeXicn 14 років тому

    I am sorry, I still do not see what is it used for. We can use f(c) instead of inte(f(x)*delta(t-c)), which is much simpler! I am confused!

  • @jxchtajxbt53
    @jxchtajxbt53 3 роки тому

    You are missing a factor of 1/2 as the integral is from 0 - infinity

    • @jxchtajxbt53
      @jxchtajxbt53 3 роки тому

      My bad you are correct provided c > 0 , at c = 0 I think you need a limit from both sides even if infinitesimally small and then missing the 1/2

    • @jxchtajxbt53
      @jxchtajxbt53 3 роки тому

      Wrong again: value is 1 if the point 0 is included in the integration

  • @胡昕加
    @胡昕加 6 років тому

    Why integral from zero to infinite is one

  • @Macranius
    @Macranius 13 років тому +2

    Is it just me or it says at the top "Detla" instead of "Delta"

    • @thesufferingengineer6003
      @thesufferingengineer6003 4 роки тому

      is it just me or does it say "sais" in your comment instead of "says" XD hehehehe

    • @Macranius
      @Macranius 4 роки тому +2

      ​@@thesufferingengineer6003 You are right, thank you for correcting my 8 years ago mistake

    • @thesufferingengineer6003
      @thesufferingengineer6003 4 роки тому

      @@Macranius 😁♥️

  • @subodhKumar-bx1sm
    @subodhKumar-bx1sm 6 років тому

    Laplace transform of delta(t2-3t+2)=????

    • @rikthecuber
      @rikthecuber 3 роки тому

      Use polynomial laplace formula

  • @woo216
    @woo216 12 років тому

    it says delta, umadson??

  • @persiangeorgiev
    @persiangeorgiev 7 років тому +1

    he spelled "the rock" function wrong

  • @ImaginaryHuman072889
    @ImaginaryHuman072889 13 років тому

    the guy who disliked this video is a mathematician and doesn't like generalized functions.

  • @StefanRey
    @StefanRey 11 років тому

    "Don't judge me by the straightness of my axes"

  • @woo216
    @woo216 12 років тому

    fallen angel, lost your way,

  • @woo216
    @woo216 12 років тому

    I thought you meant the title of the video, ambiguous statement is ambiguous.

  • @studyatnight1022
    @studyatnight1022 4 роки тому

    May I ask a question?
    At the poin c, delta function is not one, but infiniti. Then function times delta function at c is equal to inviniti, not that function itself.
    Why?

  • @arslankhushnood4707
    @arslankhushnood4707 6 років тому

    Aren't you mixing value of a function with the area of the function. Value of Dirac Delta is infinity but it's area is 1. Why are you multiplying the area of dirac delta with the value of f(t)?

    • @sufyannaeem2121
      @sufyannaeem2121 5 років тому

      consider the f(t) is a well behaved function and it could be consider as small as the width of dirac impulse at any point. so the product of f(t) and dirac function in that region woulb be equal to the f(a).... a is the point

  • @sonicyouth29
    @sonicyouth29 7 років тому +1

    Sal saving my ass again :)

  • @myax4500
    @myax4500 22 дні тому

    *judging you based on the straightness of your axes* (jk thank u for the video)

  • @unborn29
    @unborn29 9 років тому

    I don't hear anything. Why is that? :/

  • @ThaRealChuckD
    @ThaRealChuckD 8 років тому

    It's an incorrect assumption to assume that infinity actually exists. Because it doesn't. You'd be better illustrating these functions under constraints. They are still valid, but make no sense using impossible "infinity" constraints.

    • @GenerationXerography
      @GenerationXerography 7 років тому

      He said "pseudo infinity". Anyway, the existence of "infinity" is more tangible than the existence of numbers themselves!

  • @jillianseymour5645
    @jillianseymour5645 Рік тому

    Ugly scar was a good jelly Siri set the one right around the break up of that to be honest honestly lotta fun yeah lol classic break your femur Monday is a Mary habanero I hear not happening hey guys so don't be alarmed but like half of my legs are about to go into surgery I've been screaming pain right now love you say hi to grandma and grandpa for me hi yeah how do you sir Peyton passing out love you oh no on Montagna your volcano yeah that's a cone volcano and then there's also shield volcanoes what's the last type of volcano come on people con shield. Cc. Cccc c

  • @knowledge90s93
    @knowledge90s93 8 місяців тому

    If f(t) F(s) and g(t) G(s) then f(t)*g(t)++ F(s)G(s)e^-s
    True
    False

  • @viviankaspar6928
    @viviankaspar6928 10 місяців тому

    thank you!

  • @rifaturrahman5779
    @rifaturrahman5779 5 років тому +2

    "Don't judge me by the straightness of my axes"