Laplace transform of the dirac delta function | Laplace transform | Khan Academy

Поділитися
Вставка
  • Опубліковано 5 жов 2009
  • Courses on Khan Academy are always 100% free. Start practicing-and saving your progress-now: www.khanacademy.org/math/diff...
    Figuring out the Laplace Transform of the Dirac Delta Function
    Watch the next lesson: www.khanacademy.org/math/diff...
    Missed the previous lesson?
    www.khanacademy.org/math/diff...
    Differential Equations on Khan Academy: Differential equations, separable equations, exact equations, integrating factors, homogeneous equations.
    About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content.
    For free. For everyone. Forever. #YouCanLearnAnything
    Subscribe to KhanAcademy’s Differential Equations channel:: / channel
    Subscribe to KhanAcademy: ua-cam.com/users/subscription_...

КОМЕНТАРІ • 115

  • @AlexanderAV
    @AlexanderAV 13 років тому +25

    You are amazing! Most profs these days just read off slides or mumble to themselves as they write down things without explaining anything.
    As opposed to you, who speaks clearly and actually explains every single aspect =D Thanks!

    • @sitting_chair4962
      @sitting_chair4962 4 місяці тому +1

      "profs these days" written 13 years ago, I'm dead.

  • @SayanGHD
    @SayanGHD 7 років тому +33

    "Don't judge me by the straightness of my axes" made my day !

  • @pseudohominom
    @pseudohominom 10 років тому +5

    Wow, I love the way math can do anything. And I love the way you explain things. your use of colors really helps.

  • @shahidullahkaiser1159
    @shahidullahkaiser1159 7 років тому

    Just when i'd given up hope of understanding these things, I came across this video. You're a godsend. Thank you. :)

  • @hanxia9862
    @hanxia9862 5 років тому

    I spent 2 hours trying to figure out how to find the Laplace Transform with the sifting property of the delta function. Thank you!

  • @yagiztr1
    @yagiztr1 7 років тому +3

    fourth time getting the differantial class, first time understanding. thanks!

  • @embarrassingstain
    @embarrassingstain 11 років тому

    Best explanation of the sifting property of the delta function I've ever seen!

  • @gensvitux
    @gensvitux 9 років тому +13

    There's a tiny error in the last yellow expression where you wrote delta{ } instead of L{ }

  • @amaypatel276
    @amaypatel276 7 років тому +6

    Khan academy is great...👍👍👍

  • @amyy5141
    @amyy5141 8 місяців тому +1

    Just like wow😅... amazing teaching.. you were really ahead of time sir

  • @reypope19
    @reypope19 12 років тому

    saved my life. studying for my Diff Eq final tomorrow at UFlorida. big portion will be on the dirac delta, step, periodic functions' laplace transforms and convolation.

  • @chilly_29sl68
    @chilly_29sl68 11 років тому

    excellent teaching !!! i don't think it can be clearer than that!

  • @shehryaramin1481
    @shehryaramin1481 4 роки тому

    Best Demonstration till now....!
    Hats Off!

  • @sipoVvids
    @sipoVvids 2 роки тому

    One of the most useful explanations I've seen. Thank you

  • @manderina16
    @manderina16 11 років тому +1

    i can hear you in my head when im doing math questions lol
    thank you for your videos

  • @shazaduh
    @shazaduh 15 років тому

    very nice video, I like the way how you break down the integral and gave intuition.

  • @mejdbaba
    @mejdbaba 11 років тому +1

    Thank you so much for this wonderful video. Now, I know what Dirac delta function is.

  • @quadrinhosmonica2735
    @quadrinhosmonica2735 5 років тому +1

    Because t means time in the context of the Dirac Delta function, you can evaluate the improper integral from 0 to (infinity), instead of (- infinity) to (infinity), since there is no such thing as "negative time"*
    *As I'm saying this in 2018 I really hope some future physicists don't come up with negative time.

  • @lekanadenusi462
    @lekanadenusi462 8 місяців тому

    This was very enlightening. Thank you!

  • @n00bkill
    @n00bkill 14 років тому

    Thankyou Sal from University of Surrey.
    I will donate to your website If I manage to get a decent grade in Maths this year. You saved me from failing last year!

  • @nucspartan321
    @nucspartan321 5 років тому

    god bless your intuition Khan. Don't memorize, understand.

  • @izaish7981
    @izaish7981 4 роки тому +1

    Its like sal learned to teach at khan academy. He nails it!

  • @AmirRastpour
    @AmirRastpour 13 років тому +2

    It was great.
    I have a non-mathematical question! Could you please let me know what is the brand and model of the optical pen you are using?

  • @abdulmusawwir8603
    @abdulmusawwir8603 6 років тому

    Excellent demonstration👍

  • @sahdevchavda7820
    @sahdevchavda7820 8 років тому

    I am highly thankful to you Sir.

  • @elit8888
    @elit8888 7 років тому +3

    So funny and very easy to understand, thanks!

  • @johnlie8586
    @johnlie8586 4 роки тому

    Khan is really Khan.
    Many thanks khan.

  • @lengua79
    @lengua79 13 років тому

    thanks a lot, now Dirac delta function is not a mistery anymore !!

  • @bethtubechika
    @bethtubechika 14 років тому

    wao another cracking good video. thanks alot

  • @baruahsarthak_
    @baruahsarthak_ 11 місяців тому

    Superb explanation!

  • @blacksilkblacksilk
    @blacksilkblacksilk 15 років тому +1

    Dear colleague, where have you been back in the days when I had to crunch through my quantum mechanics lessons?
    I do not know if you get much feedback, but let me assure you I enjoy your lessons tremendously, and I see a great usefulness in what you do. First anyone can run and re-run - which you cannot do with an actual professor. Second, your way of explaining things makes it clear what`s going on even if a rock listens.
    And to think that I always dreamed of a source like this ...

  • @wojtek_js
    @wojtek_js 10 років тому

    I understand how you did it visually but I was just wondering if there was any way to solve that integral analytically? As in by just numbers, without drawing te functions?

  • @quitest4850
    @quitest4850 4 роки тому

    thank you this is easy to understand

  • @ez910503
    @ez910503 13 років тому

    @runninriot15 I think it's not so much an issue with negative time as with the definition of Laplace transform. The dirac delta function could very well be applied to positions or (as you said) relative time frames, but it is mathematically meaningless to consider the Laplace transform of a function for t < 0, because the Laplace transform is defined only from t = 0 to t = infinity.
    Thank you Sal for this wonderful intuitive proof of a difficult concept. I owe you lots!

  • @birdtweet1
    @birdtweet1 Рік тому

    Absolutely brilliant

  • @guilhermecarvalho2023
    @guilhermecarvalho2023 8 років тому

    Thank you so much Sal...

  • @robertoberidojr.435
    @robertoberidojr.435 2 роки тому

    This is the most beautiful thing I've seen today

  • @nikitasdev9843
    @nikitasdev9843 6 років тому

    awesome!

  • @shadow_navneet
    @shadow_navneet 7 місяців тому

    tomorrow is my exam and this is so helpful

  • @kwprice12
    @kwprice12 5 років тому

    VERY WELL STATED

  • @georgepp98
    @georgepp98 4 роки тому

    God bless you!

  • @asif7240
    @asif7240 8 місяців тому

    Thank you!

  • @rifaturrahman5779
    @rifaturrahman5779 4 роки тому +2

    "Don't judge me by the straightness of my axes"

  • @lisinka3
    @lisinka3 15 років тому

    I think all mathematicians do.
    A mathematician is a device for turning coffee into theorems. -Paul Erdos

  • @baden300
    @baden300 10 років тому +5

    "the plain, vanilla delta function"

  • @billy4958
    @billy4958 7 років тому

    thank you sir

  • @Whattheugi
    @Whattheugi 10 років тому

    I was doing some googling on this function and friend that it's integral is the function sign(x). Could someone explain this?

  • @blacksilkblacksilk
    @blacksilkblacksilk 15 років тому

    ... in the dark hours between three o clock in the morning and dawn, living on coffee and equations alone.
    If that sounded a bit enthusiastic, it is because I am.
    Very good vids. Thanks so much for posting.
    Have an especially nice day
    silk
    ;-))

    • @an_orange8911
      @an_orange8911 6 років тому

      here! have a comment after 8 years plus a like too.

  • @CrispyCyclicCenk
    @CrispyCyclicCenk 10 років тому

    thank you so much

  • @viviankaspar6928
    @viviankaspar6928 6 місяців тому

    thank you!

  • @CarnageBoy1
    @CarnageBoy1 11 років тому

    i hope this helps in my tomorrow's exam

  • @phalgunvedantam1388
    @phalgunvedantam1388 6 років тому +1

    "Dont judge me by the straightness of my axes" - Sal Khan

  • @sireggsable
    @sireggsable 8 років тому +1

    At 11:27 he writes a delta symbol where it should be a Laplace symbol. Good video though.

  • @yellowmoe
    @yellowmoe 14 років тому

    kinda sad you didn't make these videos last year, might have saved my failing grade

  • @bolbteppa
    @bolbteppa 15 років тому

    One torus-shaped mug , two hypercubes of sugar and a nice Fourier wave caused by the ripples as they splash in make any cup of coffee worth drinking in the wee-early/late/crazy hours of any day(:

  • @talhairfan9444
    @talhairfan9444 7 років тому

    He said that we draw an arrow over the Dirac Delta Function with HEIGHT = 1 to show that its area is 1. How does it makes sense? Isn't the base very small (or an epsilon), so how will multiplying by a height of 1 will give an area of 1?

  • @m.haseebshahzad9058
    @m.haseebshahzad9058 6 років тому

    S is variable how it can be taken out from integration?

  • @dwx
    @dwx 13 років тому

    i found that much more than "reasonable useful" ^_^

  • @MisterAadj
    @MisterAadj 7 років тому

    thanks

  • @user-uj1vs8ng2r
    @user-uj1vs8ng2r Рік тому

    Master❤

  • @Macranius
    @Macranius 13 років тому

    @Macranius By the way, this was really usefull for me

  • @Pfiver
    @Pfiver 13 років тому

    Very . good ! - Thank . you . so . much ! :-)

  • @ramseycdavid
    @ramseycdavid 9 років тому +2

    Isn't the integral of the Dirac delta function equal to 1 when evaluated from -infinity to +infinity. So wouldn't the integral be roughly 1/2 when evaluated from 0 to infinity? +KhanAcademy

    • @prohiprohi
      @prohiprohi 9 років тому +1

      ramseycdavid no, because it only has "area" under where t=c, and he did this for c>0, so if t

    • @lsbrother
      @lsbrother 8 років тому

      +ramseycdavid Integral of Dirac delta(x-c) dx is 1 as long as the integral range includes the point c - anywhere else is zero by definition so doesn't matter whether you include it or not!

    • @p12psicop
      @p12psicop 7 років тому

      I was thinking the same thing. =)

    • @m.haseebshahzad9058
      @m.haseebshahzad9058 6 років тому

      No, because c is positive it it could be negative then we can say this

  • @raozubair2653
    @raozubair2653 4 роки тому

    Chaa gia hai jaani Ly

  • @usman5954
    @usman5954 5 років тому

    👍👍👍

  • @ddg-norysq1464
    @ddg-norysq1464 3 роки тому

    if c = -1 for delta(t-c) then the laplace transform isn't e^-sc but 0 right? or am i wrong here? I thought of that because delta(t-c) would be 0 on the entire positive side, so you basically calculate just the integral of 0dt

  • @aravindgopal3555
    @aravindgopal3555 Рік тому

    At 11.16 how is f(c) at c = 0 , i.e. f(0) = 1?

  • @lsbrother
    @lsbrother 8 років тому

    This was so long-winded after about 2:00 that it almost got confused.
    Should have demonstrated the property of integrating Dirac delta with any function. The result with Laplace fn then follows easily.

  • @user-ij6kp2gh8x
    @user-ij6kp2gh8x 5 років тому +1

    부디 한글 자막좀 ...ㅠㅠ

  • @bolbteppa
    @bolbteppa 15 років тому

    I know the feeling... (:

  • @ImaginaryHuman072889
    @ImaginaryHuman072889 12 років тому

    the guy who disliked this video is a mathematician and doesn't like generalized functions.

  • @iratelyblank
    @iratelyblank 12 років тому

    @shrikant96 I think he studied electrical engineering and something else at MIT

  • @user-ko3jo6po5l
    @user-ko3jo6po5l 6 років тому

    Why integral from zero to infinite is one

  • @dillongatesanw
    @dillongatesanw 11 років тому +1

    do not judge me by the straightness of my axis

  • @woo216
    @woo216 12 років тому

    it says delta, umadson??

  • @runninriot15
    @runninriot15 13 років тому

    i know it's not intuitively true but:
    what if your c is negative, then your integral from 0 to inf would not cover it.
    but i guess negative time doesn't make sense either, unless you're talking in different reference frames

    • @anonywamy
      @anonywamy 2 роки тому

      i know your comment is from 11 years ago, but i'll answer anyway haha. your question is very great!! if c was negative (which it can be), then the integral from 0 to infinity would be 0. the area is 1 (scaled however) only when c is within the limits of integration

  • @persiangeorgiev
    @persiangeorgiev 7 років тому +1

    he spelled "the rock" function wrong

  • @muratkar8753
    @muratkar8753 6 років тому

    How did you get 1 in 1:22

    • @monalesk8
      @monalesk8 6 років тому

      Take a look at the last video where he introduces the Dirac delta function, there he makes an intuitive proof of that area of 1 ( ua-cam.com/video/4qfdCwys2ew/v-deo.html )

  • @Macranius
    @Macranius 13 років тому +2

    Is it just me or it says at the top "Detla" instead of "Delta"

    • @thesufferingengineer6003
      @thesufferingengineer6003 4 роки тому

      is it just me or does it say "sais" in your comment instead of "says" XD hehehehe

    • @Macranius
      @Macranius 4 роки тому +2

      ​@@thesufferingengineer6003 You are right, thank you for correcting my 8 years ago mistake

    • @thesufferingengineer6003
      @thesufferingengineer6003 4 роки тому

      @@Macranius 😁♥️

  • @313mando
    @313mando 12 років тому

    @khan : all i wanna know is.....where did you study?!??

  • @aravindan7422
    @aravindan7422 4 роки тому

    god creating me : 5:37

  • @HeXicn
    @HeXicn 13 років тому

    I am sorry, I still do not see what is it used for. We can use f(c) instead of inte(f(x)*delta(t-c)), which is much simpler! I am confused!

  • @subodhKumar-bx1sm
    @subodhKumar-bx1sm 6 років тому

    Laplace transform of delta(t2-3t+2)=????

    • @rikthecuber
      @rikthecuber 3 роки тому

      Use polynomial laplace formula

  • @sonicyouth29
    @sonicyouth29 7 років тому +1

    Sal saving my ass again :)

  • @jxchtajxbt53
    @jxchtajxbt53 3 роки тому

    You are missing a factor of 1/2 as the integral is from 0 - infinity

    • @jxchtajxbt53
      @jxchtajxbt53 3 роки тому

      My bad you are correct provided c > 0 , at c = 0 I think you need a limit from both sides even if infinitesimally small and then missing the 1/2

    • @jxchtajxbt53
      @jxchtajxbt53 3 роки тому

      Wrong again: value is 1 if the point 0 is included in the integration

  • @Macranius
    @Macranius 11 років тому

    it says detla: T before L, watch carefully the video again

  • @arslankhushnood4707
    @arslankhushnood4707 6 років тому

    Aren't you mixing value of a function with the area of the function. Value of Dirac Delta is infinity but it's area is 1. Why are you multiplying the area of dirac delta with the value of f(t)?

    • @sufyannaeem2121
      @sufyannaeem2121 5 років тому

      consider the f(t) is a well behaved function and it could be consider as small as the width of dirac impulse at any point. so the product of f(t) and dirac function in that region woulb be equal to the f(a).... a is the point

  • @woo216
    @woo216 11 років тому

    I thought you meant the title of the video, ambiguous statement is ambiguous.

  • @x69WINNING69x
    @x69WINNING69x 7 років тому

    Sal those are quotation marks not parentheses

  • @studyatnight1022
    @studyatnight1022 4 роки тому

    May I ask a question?
    At the poin c, delta function is not one, but infiniti. Then function times delta function at c is equal to inviniti, not that function itself.
    Why?

  • @unborn29
    @unborn29 9 років тому

    I don't hear anything. Why is that? :/

  • @woo216
    @woo216 12 років тому

    fallen angel, lost your way,

  • @ThaRealChuckD
    @ThaRealChuckD 8 років тому

    It's an incorrect assumption to assume that infinity actually exists. Because it doesn't. You'd be better illustrating these functions under constraints. They are still valid, but make no sense using impossible "infinity" constraints.

    • @GenerationXerography
      @GenerationXerography 7 років тому

      He said "pseudo infinity". Anyway, the existence of "infinity" is more tangible than the existence of numbers themselves!

  • @jillianseymour5645
    @jillianseymour5645 Рік тому

    Ugly scar was a good jelly Siri set the one right around the break up of that to be honest honestly lotta fun yeah lol classic break your femur Monday is a Mary habanero I hear not happening hey guys so don't be alarmed but like half of my legs are about to go into surgery I've been screaming pain right now love you say hi to grandma and grandpa for me hi yeah how do you sir Peyton passing out love you oh no on Montagna your volcano yeah that's a cone volcano and then there's also shield volcanoes what's the last type of volcano come on people con shield. Cc. Cccc c

  • @knowledge90s93
    @knowledge90s93 4 місяці тому

    If f(t) F(s) and g(t) G(s) then f(t)*g(t)++ F(s)G(s)e^-s
    True
    False

  • @StefanRey
    @StefanRey 11 років тому

    "Don't judge me by the straightness of my axes"