Smooth Interpolation Function in One Dimension | Smooth Interpolation Function E1

Поділитися
Вставка
  • Опубліковано 30 тра 2024
  • #SoME2
    This video gives a detailed construction of transition function for various levels of smoothness.
    Sketch of proofs for 4 theorems regarding smoothness:
    kaba.hilvi.org/homepage/blog/...
    Faà di Bruno's formula:
    en.wikipedia.org/wiki/Fa%C3%A...
    Proof that e^(-1/x) is smooth:
    en.wikipedia.org/wiki/Non-ana...
    Chapters:
    00:00 Intro
    00:10 Definition of Smoothness
    01:29 Hermite Interpolating Polynomials
    04:32 Step Function
    05:56 Auxiliary Theorems
    08:43 Constructing Smooth Step Function
    13:30 Main Problem
    13:51 Outro
    🎵Music provided by BGM President
    🎵Track : Some Vintage Mood 7 - • [Royalty Free Music] S...
    Corrections:
    08:04 for the first theorem, f should be f'
    08:15 for (2), it should be f(x) ≠ 0

КОМЕНТАРІ • 355

  • @pedrokrause7553
    @pedrokrause7553 Рік тому +510

    Is there a name for this kind of interpolation so that I can search more about?

    • @EpsilonDeltaMain
      @EpsilonDeltaMain  Рік тому +263

      I wish a name was given for the process but I do not know. In practice, matching boundaries up to certain order of derivatives is used all the time in numerical analysis (e.g. Hermite Polynomials) which are practical, but to require infinite differentiability in a closed formula is something you may or may not see in a course in smooth manifolds/functional analysis which are graduate level subjects, and thats why I thought it was appropriate to cover it since it is not very accessible at an elementary level in context.
      But if I were to give the closest concept for this kind of "filling in the middle smoothly" process with a known name, I would say searching Smooth Urysohn's Lemma would get you most relevant results. My next video in the series is going to cover that topic

    • @pedrokrause7553
      @pedrokrause7553 Рік тому +71

      @@EpsilonDeltaMain I see! Thank you for your quick response. Another thing I would like to ask is: are there different solutions, that is, solutions other than taking e^(-1/x) ? If not, wouldn't it mean that the limit of Hermite polynomials when their degrees tend to infinity converges to the found solution? In the video, you said that using an infinite series would result in the Taylor series, but isn't this different from doing the previous limit? Because with limits you get what the polynomial approaches when it goes to infinity, not what it is at infinity.

    • @EpsilonDeltaMain
      @EpsilonDeltaMain  Рік тому +92

      @@pedrokrause7553 Very good questions. I like your questions and it adds so much value to some missing details in the video, so I pinned it if you don't mind
      1. It doesn't have to be e^(-1/x). as long as the f in the f(-1/x) decays asymptotically a lot faster than -1/x shoots off to infinity as x -> 0+. For example f(x) = 5^(-x^2) will do it as well [*this is a gaussian], and if you are clever enough you can find an infinite family of these kinds of functions, including ones that does not directly use exponential function, such as erf(x) or 1/Γ(-x+2). But tail ends of functions like arctan(x) or 1/(x^10+1) will not decay fast enough to make derivatives of all order = 0 at x=0 for f(-1/x).
      Plus, we dont even have to use f(-1/x), and use something like f(-1/x^2) as this example shows:
      en.wikipedia.org/wiki/Flat_function
      2. You are right, I assumed that if such Taylor series existed, it would fail to satisfy the left and the right simultaneously. e.g. if the left function was sin x, then taylor series uniquely defines the function extension to be the sin x.
      3. But if we instead take a look at the limit of these hermite polynomials, the series wouldn't converge. Just take a look at first few hermite polynomials. for step interpolation.
      en.wikipedia.org/wiki/Smoothstep
      The coefficients blow up to tens of thousands fairly quickly, and the function only is bounded since the terms are alternating and pluses and minuses cancel each other. The limit of the polynomial would not exist since it would be like ∞x-∞x^2+∞x^3-∞x^4... if you look at the closed formula of coefficients of the hermite polynomial for each order

    • @etienneparcollet727
      @etienneparcollet727 Рік тому +15

      Look up partitions of unity.

    • @MusicEngineeer
      @MusicEngineeer Рік тому +41

      Maybe look up "bump function" or "mollifier". If I understand it correctly, this sort of interpolation uses such bump-functions to "crossfade" between the two target functions.

  • @kallethoren
    @kallethoren Рік тому +99

    The "Can we do any better?" with Lara Croft got me good

  • @TechSY730
    @TechSY730 Рік тому +229

    Good stuff.
    Kind of gives insight as to why finding an "analytic" continuation (but for this video not really as we are only dealing with reals, but more generally) can be difficult. Why "infinitely differentiable" is such a constraining condition.
    (Hopefully) Constructive criticism:
    I found myself losing track of which "Greek letter function" was modeling what parts of our goal.
    Like it would be helpful to have a line like "φ will be the continuous step function used to interpolate" or something when you defined the function.
    Same for the ψ function too.
    If you did already describe it, there was enough time between when you and when you stated it and performing the proofs and derivations (8:30 ish) that it deserved having a reminder at that point.

    • @XplosivDS
      @XplosivDS Рік тому +21

      I agree, proper distinction goes a long way into making whatever you're saying more understandable

    • @macmos1
      @macmos1 Рік тому +7

      lost me there as well

    • @pierrecurie
      @pierrecurie Рік тому +4

      Usually the phrase "analytic continuation" applies to complex functions, and the Taylor series is _the unique_ analytic continuation. This construction introduces nasty essential singularities at x=0 & x=1 (not that real valued functions care).

    • @An-ht8so
      @An-ht8so Рік тому +4

      The smooth continuation is in fact not analytic, at a and b. The function exp(-1/x), has all of its derivatives equal to 0 at x=0, so it would be equal to the null function in the neighborhood of 0 if it were analytic.

    • @alex_zetsu
      @alex_zetsu Рік тому +1

      @@An-ht8so I mean, it doesn't need to be analytic, the fact that the transition is smooth already removes a lot of headaches when stitching functions together.

  • @offscript1675
    @offscript1675 Рік тому +329

    Safe to say, I’m confused

    • @PTAlisPT
      @PTAlisPT Місяць тому +12

      k on fused functions

    • @sclearDevelopment
      @sclearDevelopment Місяць тому +1

      ​​@@PTAlisPT this got me 😂😂😂

    • @terjeoseberg990
      @terjeoseberg990 Місяць тому

      It’s easy. He gradually and smoothly transitioned from one function to another function where the two functions are both smooth and chosen to meet perfectly with the ends of the two given functions.

    • @sans1331
      @sans1331 29 днів тому +3

      @@terjeoseberg990ah, okay. personally, i’m just confused on the whole “C^k” and “psi” and “phi” stuff. what is “C”? all that kinda stumped me on my first time watching.

    • @aouerfelli
      @aouerfelli 21 день тому

      @@sans1331 C^k is a set, it is the set of functions that are k times differentiable with all those k derivatives being continuous. You can also use the notation C^k(Omega) which means that its functions are k times differentiable and the k-th derivative is continuous over the domain Omega.

  • @Xammed
    @Xammed Рік тому +58

    The subtle humor in this is incredible

  • @AlexK-jp9nc
    @AlexK-jp9nc Рік тому +65

    This is a very good video. I only ask that you look into stabilizing the volume of the voice over. I found that it was drifting up and down, occasionally to the point that I couldn't hear it over the music. You can probably do this with a single button press in your editing software.
    Thank you for bringing this interesting math to the public eye. There's no way I would have seen something like this without you. I hope you keep making videos

  • @LukePalmer
    @LukePalmer Рік тому +71

    Very beautiful technique. I also love that that function e^(-1/x) is bonkers in the complex plane so this argument totally breaks down on the complexes.

    • @tomkerruish2982
      @tomkerruish2982 Рік тому +5

      Well, if a complex function has a first derivative on an open set, then it has derivatives of all orders on that set, and is even analytic there. (It's possible to construct a real function which is infinitely differentiable on all of R and yet is nowhere analytic. Real analysis is so good at crushing reasonable expectations.)

    • @LukePalmer
      @LukePalmer Рік тому +6

      @@tomkerruish2982 e^(1/x) doesn't have a first derivative at 0. Looks flat in the real numbers but move the slightest bit in the imaginary direction and it's totally chaotic.

    • @tomkerruish2982
      @tomkerruish2982 Рік тому

      @@LukePalmer First, I'll admit that I glanced at your comment and read it as "exp(-1/x²)", erroneously inserting the exponent. Second, however, like you I was highlighting the (to me) main difference between the real and complex derivative. exp(-1/x²) has real derivatives of all orders at x=0, but is so badly behaved for complex values that it has an essential singularity.
      I certainly confess to the twin sins of reading too quickly and writing too tersely.

  • @smorcrux426
    @smorcrux426 Рік тому +37

    Woah. When I just saw this video in my feed I tried a few ideas on paper, and it's really cool to see what the actual solution is, and which ideas I had were in the right direction and which weren't.

  • @VlZlA
    @VlZlA Рік тому +44

    Thank you so much! This has been in the back of my mind for a while now. Great explanation.

  • @robertjackson2002
    @robertjackson2002 Рік тому +5

    This is such quality content! I will be sure to send it to everyone I know who will be interested.

  • @nanogyth
    @nanogyth Місяць тому +9

    I had heard about analytic continuation, but hadn’t thought about how a function could be smooth and not analytic before now. Thanks

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 22 дні тому

      My intuition would say it's possible with real functions but not complex functions, but I'm not certain of that. Differentiable just has different consequences for each.

    • @SVVV97
      @SVVV97 18 днів тому

      ​@@xinpingdonohoe3978that's true - complex differentiable (even just once) functions are *very* rigid. They're automatically infinitely complex differentiable (holomorphic) and all holomorphic functions are (complex) analytic

    • @TheLuckySpades
      @TheLuckySpades 11 днів тому

      ​@@xinpingdonohoe3978complex differentiable functions are locally analytic, so you are correct that you cannot have a complex smooth function that isn't analytic

  • @user-lz5fn6jx6t
    @user-lz5fn6jx6t 18 днів тому

    Just found this gem, brought back memories of an intro analysis class of a few years back. Thank you!

  • @adissentingopinion848
    @adissentingopinion848 29 днів тому

    Godddamn, you talked to me right on the cusp of my knowledge. I saw that interpolation a whole 5 minutes before you revealed it, but you built the conceptual framework so well that it basically taught itself. You made the knowledge jump out of the words and equations. Incredible!

  • @wyrmhero4275
    @wyrmhero4275 Рік тому +18

    This video is just mindbowing, never thought that there would even be a way to construct truly smooth interpolation. Also, your visuals and presentation is really great, loved it. Keep going!

    • @nikitakipriyanov7260
      @nikitakipriyanov7260 Рік тому

      Interestingly enough, it was teached to us in the university when we were introduced into Dirac delta function. This was a part of some 3rd year math for physics students. These c-infinite functions are required to properly define and prove theorems which involve the Dirac delta, and by an extension, Green's functions which are "supercharged deltas" and therefore QED propagators, which are essentially Green's functions. This is why this was important for physics students - we actually need this to learn QED (which we learned afterwards).

  • @givrally7634
    @givrally7634 Рік тому +18

    One small thought. The way I like to teach Taylor polynomials is by going "Okay, a tangent line is a good approximation but it doesn't approximate the derivative well, so what if we use a tangent line to approximate the derivative instead, and then take the integral ?"
    Assuming both functions are smooth too, wouldn't that also be a possibility ? Take the derivatives, use a line to interpolate, and take the integral ?

    • @Pystro
      @Pystro Рік тому +3

      It should, as long as you choose the constant terms in the integration process so that your function and one (should not need to be both) of the bounding functions match, up to their k-th derivative.

    • @tracyh5751
      @tracyh5751 Рік тому +4

      This will just construct a truncated Taylor series which will have the same problems as the Hermite and Taylor approaches.

    • @Pystro
      @Pystro Рік тому +2

      @@tracyh5751 OP's post was about teaching how Taylor polynomials work. So ending up with a Taylor polynomial shows that it's a valid perspective on it.

  • @luisvasquez5015
    @luisvasquez5015 Місяць тому

    Amazing quality of mathematical argumentation, balancing rigor and pedagogy! I instantly subscribed

  • @LeventK
    @LeventK Рік тому +5

    This channel truly has a future. Signed.

  • @denki2558
    @denki2558 Рік тому +11

    I recently used the same thing in one of my projects and I ended up using the cubic interpolation approach.
    I might implement something similar to what was shown at the end.
    Thanks for the knowledge.

  • @energyeve2152
    @energyeve2152 Рік тому +4

    I’ve actually always wondered about this. Thanks for sharing!

  • @web2wl00p
    @web2wl00p Рік тому +3

    What a wonderful video, one of the best in #SoME2! Keep on the good work!

  • @fightocondria
    @fightocondria Рік тому +11

    So -- I tinker with math sometimes. And this might actually be exactly what I needed to take an idea to the next step. Great video!

  • @AndrewBrownK
    @AndrewBrownK Рік тому +5

    I 100% needed this, thank you so much

  • @joluju2375
    @joluju2375 Рік тому +2

    I had to play the video twice to finally understand that the solution you expose is what is known as "crossfading" in audio engineering, and that most of the video is devoted to how to easily build a decent S-shape transition signal. I appreciate when ideas and intentions come first in plain language, and the maths come after, it's more easy for me to follow. However, I subscribed to your channel. Please, keep the pace slow, and the music down ! :D

  • @a.arredondo
    @a.arredondo Рік тому +2

    OMG that cliffhanger at the end 😭 what a great video, congrats!

  • @jabbahatt8082
    @jabbahatt8082 Рік тому +2

    MAN, KEEP DOING WHAT UR DOING, YOU'LL GET A LOT OF SUBSCRIBERS IN NO TIME

  • @Erotemic
    @Erotemic Рік тому +1

    Your use of color makes this much easier to follow. Subscribed.

  • @kevinrichter6503
    @kevinrichter6503 Рік тому +32

    9:13 Psi needs to be *strictly* monotone increasing. Since otherwise the 0-function would satisfy your conditions, but phi could not be defined

    • @SoumilSahu
      @SoumilSahu Рік тому +3

      monotonic increasing does mean that it's not the 0 function. The 0 function would be monotonic non-decreasing. So the video is correct.

    • @TheTim466
      @TheTim466 Рік тому +4

      @@SoumilSahu That depends on your specific definition I guess, if you use monotonic increasing for the usual definition of strictly monotonic increasing, then the 0-function is not monotonically increasing I suppose. Although monotonic non-decreasing is a weird term in my opinion.

    • @schweinmachtbree1013
      @schweinmachtbree1013 Рік тому

      @@SoumilSahu No the video isn't correct because it uses the condition f' ≥ 0 for a function f being 'monotone increasing', which is the condition for weak monotone increasingness; if strict monotone increasingness was meant then the condition f' > 0 would have been used (which would have ruled out the zero function)

  • @amaarquadri
    @amaarquadri Рік тому +9

    So cool! I had a feeling it should be possible to do this conceptually by taking the limit as k -> infinity of the k-differentiable approximations, but it's great to see a general construction of the infinitely differentiable version. Great video!
    My intuition says the equivalent problem in 2D is impossible in general, but I can't wait for the video on it!

    • @alex_zetsu
      @alex_zetsu Рік тому +3

      Well, an infinite series of 2K terms would be disappointing, but as he showed it can be done in closed form.

  • @kintrix007
    @kintrix007 Рік тому +2

    Awesome topic with great presentation. I would not have guessed the solution is this elegant. Just great job on video.

  • @sheeplord4976
    @sheeplord4976 Рік тому +2

    I did not know I needed this, but glad I found it. Long live smooth transitions.

  • @gush5436
    @gush5436 5 місяців тому +1

    This should have millions of views, this is incredibly useful in practice :D

  • @AlexanderVulpes
    @AlexanderVulpes Рік тому +3

    This is really surprising! When I first saw the title I figured smooth transitions would be impossible, but here we are lol

  • @johnchessant3012
    @johnchessant3012 Рік тому +10

    That's really cool! The exercise of proving e^(-1/x) is smooth at x=0 must've come up in like five different math classes I took and now finally I see how that might be useful.

    • @HilbertXVI
      @HilbertXVI Рік тому +5

      The real kicker is that even though it's smooth at 0, it doesn't have a Taylor series expansion around 0.

    • @pierrecurie
      @pierrecurie Рік тому +5

      @@HilbertXVI That's what Laurent series are for.

    • @schweinmachtbree1013
      @schweinmachtbree1013 Рік тому +4

      @@HilbertXVI It does have a Taylor expansion at 0 (every smooth function does) - the kicker is that its Taylor series doesn't converge to it at (in any neighborhood of) 0.

    • @HilbertXVI
      @HilbertXVI Рік тому +3

      @@schweinmachtbree1013 Not a very useful "Taylor expansion" if it doesn't converge to the function

  • @ImMataza
    @ImMataza Рік тому +2

    great video, and thanks for putting link to proofs in the description

  • @ahuddleofpenguins4842
    @ahuddleofpenguins4842 Рік тому +2

    Nice vid. I cant wait to see what videos you post next

  • @abird9724
    @abird9724 Рік тому +3

    Very good videos, please continue!

  • @wisdomokoro8898
    @wisdomokoro8898 Рік тому +4

    You just revived my love for calculus🥺✨✨.
    Great motion of mathematical thoughts!

    • @Fire_Axus
      @Fire_Axus 2 місяці тому

      your feelings are irrational

    • @turolretar
      @turolretar Місяць тому

      Would you like some pi with that?

  • @DeclanMBrennan
    @DeclanMBrennan 20 днів тому

    Thanks. That smoothly connected several topics for me. You seemed to be approaching the halted problem when you halted.

  • @AJ-et3vf
    @AJ-et3vf Рік тому +1

    Awesome video! Thank you!

  • @cosmicvoidtree
    @cosmicvoidtree Рік тому +4

    A simplification of the phi function is 1/(1+e^((1-2x)/x(1-x)). Just for those who don’t want a ton of e^-1/x in the phi function

    • @MusicEngineeer
      @MusicEngineeer Рік тому

      Nice. I guess, that will be useful for optimizing the code in a practical implementation because it reduces the number of calls to exp from 2 to 1.

  • @r.menezes
    @r.menezes Рік тому +2

    amazing content !
    I think it would be interesting didatically if you did a small recap at the end, but please keep doing this amazing work !

  • @lenskihe
    @lenskihe 29 днів тому

    I have been studying mathematics for over four years now and I had never seen Faà di Bruno's formula. Today, I've suddenly stumbled across it twice for completely unrelated reasons 😂
    Just goes to show that there's always more to learn in mathematics

  • @ShahIdilLab
    @ShahIdilLab 24 дні тому

    Wow that was great!

  • @SerhiiYolkin
    @SerhiiYolkin Рік тому +1

    Only 330 subscribers? This is a crime for such amazing content

  • @zaynbashtash
    @zaynbashtash Рік тому +2

    Great video man keep it up

  • @pacome_f
    @pacome_f Рік тому +1

    Awesome video! Learned a lot :)

  • @DR-54
    @DR-54 Рік тому +2

    you are gonna go big keep it up

  • @TheBlindfischLP
    @TheBlindfischLP Рік тому +2

    Nice! This was surprisingly interesting (:

  • @qy9MC
    @qy9MC Рік тому +4

    This exactly what I wanted to find months ago when I created a function adder. A function that can add the graphs of two different functions. Unfortunately it was undefined at the cutting point because of a division.

  • @edgelernt4021
    @edgelernt4021 Рік тому +2

    7:56 “It is too big to fit in the margin” - Pierre de Fermat has entered the chat

  • @cg505_
    @cg505_ 12 днів тому

    wow! I remember thinking about this for ages when I was a student and I really thought no such method existed! should have thought of e^(-1/x) obviously...

  • @fahrenheit2101
    @fahrenheit2101 Рік тому +3

    A little fast, and I had to take your word for a decent amount of it, but still very followable and intriguing, especially since I've thought about a very vaguely related thing before - how no 2 polynomials look the same over any interval, barring trivial exceptions like translations. I'm not even 100% sure it's true and I wouldn't have a clue how to prove it, but if it is true, it's fascinating to me that each polynomial shape is completely unique. This kinda links in to how it would be difficult to get 2 different functions to 'agree' with one another via a smooth transition function, though I admit it's a bit of a stretch.

    • @redpepper74
      @redpepper74 6 місяців тому

      Hmm I don’t think it would be possible to overlap two polynomials like that because every polynomial is analytic and has a unique Taylor series, which means that you can determine what it looks like over all the reals just by looking at all the derivatives at one point. It does feel crazy though, that with all the infinitely many polynomials, there aren’t two that line up for some interval.

  • @michaelwerkov3438
    @michaelwerkov3438 Рік тому

    Neat. Im not a math person, and im not good at math, but i love computer graphics and wish i could model certain processes, so i always end up having math questions out of my league.
    This was one. And i wouldnt have known what to search.

  • @alessandroippoliti1523
    @alessandroippoliti1523 Рік тому

    Great video !!

  • @godlyradmehr2004
    @godlyradmehr2004 Місяць тому

    Nice and creative video ❤❤❤

  • @CarterColeisInfamous
    @CarterColeisInfamous Рік тому

    3:26 you just blew my mind

  • @PeriOfTheGee
    @PeriOfTheGee Рік тому +4

    My initial guess was to use interpolation between the two functions in the smoothing area with a shifted sine as the weight

  • @8jhjhjh
    @8jhjhjh 25 днів тому

    Great video thank you

  • @bskim3860
    @bskim3860 Рік тому +2

    GREAT !!! THANK YOU~~~

  • @matteobaussart8831
    @matteobaussart8831 Рік тому +1

    At 8:11 for the first statement if f' and not f. But still a great video with interesting topic

  • @jercki72
    @jercki72 Рік тому +2

    I remember being very impressed when I found out about this

  • @nahkaimurrao4966
    @nahkaimurrao4966 Рік тому

    this is highly useful for data compression!

  • @philippelhaus
    @philippelhaus Рік тому +1

    Very cool 🔥💖

  • @apteropith
    @apteropith Місяць тому

    i think i remember this exact interpolation function coming up in thermodynamics somewhere, as a statistical distribution of energy states or something of that sort
    it's been a while and it was never well explained at the time, but I've always remembered it as "that function that could probably interpolate two other functions _really_ nicely"

    • @apteropith
      @apteropith Місяць тому

      it could have just been one of so many variants of the logistic function, though; it's been ten years

  • @EliGoldfish
    @EliGoldfish Рік тому +1

    Ive never been more thankful for python math modules that abstract this all into a function call i don't have to worry about lmao

  • @JonahLanglieb
    @JonahLanglieb Місяць тому

    That's so interesting google showed this. I was actually working on something like this for a personal CS project and was just hammering out in mathematica. Ill be curious to plug this in abd see what it looks like
    Thanks!

  • @alessandrobaca8124
    @alessandrobaca8124 Рік тому

    Very Interesting topic!

  • @yeast4529
    @yeast4529 Рік тому

    Very cool!

  • @wehitextracellularidiombit4907

    This is a great video

  • @MrGencyExit64
    @MrGencyExit64 Рік тому +5

    lol, you summed up 2 years of Calculus in the first 50 seconds of the video

  • @gnomeba12
    @gnomeba12 Рік тому +4

    Great video. This topic reminds me of the notion of mollifier functions. It seems like you could use a mollifier function along with some arbitrary continuous interpolation to create a smooth interpolation, but I'm not actually sure if that's true.

    • @gideonk123
      @gideonk123 Рік тому +2

      This is indeed a “bump” or “mollifier” function. Not sure if the terms are equivalent

  • @agrajyadav2951
    @agrajyadav2951 Рік тому

    AWESOMEEE!!!!

  • @funkdefied1
    @funkdefied1 29 днів тому

    I love the line rider ref

  • @aram8832
    @aram8832 Рік тому

    That last part was important, it can be used to form a good number of questions even for basic calculus.

  • @turnpikelad
    @turnpikelad Рік тому +10

    This solution does assume that you have full descriptions for each of the two functions between x=a and x=b, and that in that (a,b) interval neither function is discontinuous. Is there a general solution for functions f and g which might be undefined / discontinuous in the interval of transition? Can we find a smooth transition function between [f(x)=1/x, x < -1] and [g(x)=sin(1/x), x > 1]?

    • @EpsilonDeltaMain
      @EpsilonDeltaMain  Рік тому +4

      We can patch up with some smooth function in the middle that goes from -.9 and +.9 then interpolate 2 times on each boundary

    • @turnpikelad
      @turnpikelad Рік тому +3

      @@EpsilonDeltaMain OK, that works fine. I still feel a bit deflated, as it seems to me like there might be some solution for generating an interpolating smooth function out of whole cloth. My intuition wants to somehow mash a power series together with your 1/(e^(1/x)).

    • @EpsilonDeltaMain
      @EpsilonDeltaMain  Рік тому +1

      @@turnpikelad If you come up with a clever solution that works, congrats! I couldn't seem to find one explicit formula myself in case f and g doesnt behave too nicely in the domain of transition

    • @sankalp2520
      @sankalp2520 Рік тому +2

      You are correct, this solution assumes that the functions f and g are defined in the interval (a,b) and are smooth everywhere.
      I don't know if I am correct but we can extend this solution to any pair of f and g which don't need to be smooth in the interval, provided they must be smooth at the endpoints x=a and x=b. Just find the two functions f1 and g1 which are the Taylor series of f around x=a and Taylor series of g around x=b respectively and replace f(x) and g(x) with f1(x) and g1(x) in the function h(x) (at 5:21).

    • @quintium1
      @quintium1 Рік тому

      @@EpsilonDeltaMain What if you take the Taylor series of each function at the boundary points and interpolate the two Taylor series with the step function? By definition all derivatives of the Taylor series match the derivatives of the function at a boundary point, so the result must be smooth as well.

  • @scentoni
    @scentoni Рік тому +1

    The tool I would immediately reach for is the error function. Define h(x)=(1+erf( (x-x0)/a ))/2 for some point x0 and width a, then your interpolated function is f(x)+(g(x)-f(x))*h(x).

  • @innokentiyromanchenko1450
    @innokentiyromanchenko1450 Рік тому +2

    this is great

  • @joeadams9744
    @joeadams9744 Місяць тому +1

    The Lara craft pic while talking about jagged edges killed me

  • @MCLooyverse
    @MCLooyverse Рік тому +15

    This was very good (both an interesting topic, and well-presented), although a little fast IMO.
    More descriptive names (like I for "interpolater", or T/τ for "transitioner", rather than Φ, and G for "generator", K for "kernel", or S/σ/ς for "smooth", instead of ψ) would've helped to keep track of what was going on.

    • @pyropulseIXXI
      @pyropulseIXXI Рік тому

      the name are fine; the symbol isn't any more descriptive just because the first letter matches; G could be goofball, not generator, so how do you even know G is descriptive? It isn't, so it is the same as using whatever

    • @pyropulseIXXI
      @pyropulseIXXI Рік тому

      This is like complaining that the wave equation isn't labelled with a "W"

  • @Kram1032
    @Kram1032 Рік тому +2

    Do you know about Exporational B-Splines?
    Those are the limit of rational B-Splines for infinite degree.
    Another fun variant is the Fabius function which can be defined through repeatedly integrating and rescaling an interval

  • @krystofsedlacek195
    @krystofsedlacek195 Місяць тому

    Great video! I was just wondering if there isn't supposed to be f prime instead of f at 8:08. If not, it would mean that C^n+1 is always a subgroup of C^n, right?

  • @seneca983
    @seneca983 Рік тому +2

    Is e^(-1/x) the simplest option? What if we want the transition to be as "gentle" as possible in some sense? Is there some kind of natural definition for "gentleness" so that we could try to optimize it? Would e^(-1/x) be the "gentlest" option by some simple definition of "gentleness"?

    • @EpsilonDeltaMain
      @EpsilonDeltaMain  Рік тому

      I like the question, the answer to the question you are looking for is Sobolev norm, and it is a notion of boundedness of the higher derivatives. For example, if we bound the first derivative, then the function will not have steep slope anywhere and if we bound the second derivative, the function will not have abrupt curvature, and such are good measure of "gentleness". e^(-1/x) by no means is the optimal solution if you want such "gentle" functions, but you can actually tweak e^(-1/x) to get something much gentler. pick one notion of gentleness and see if you can come up with something maximally gentle

    • @seneca983
      @seneca983 Рік тому

      @@EpsilonDeltaMain Great, thanks. I'll check out the Sobolev norm.

  • @llnsve
    @llnsve 28 днів тому +1

    Hi, very interesting video/concept, did you ever end up making the video for higher dimensions ? I work on differential geometry for quantum physics for my PhD and am looking for similar stuff !

  • @ddystopia8091
    @ddystopia8091 Рік тому

    Отличный контент!

  • @syllabusgames2681
    @syllabusgames2681 Рік тому +2

    Very interesting video. I hope I won’t need any of this as I try to build my own animation script, but it’s good to know. My only issue with the video is that your music is a bit loud.

  • @jakobthomsen1595
    @jakobthomsen1595 Рік тому +1

    Very cool! I have been looking for such a transition function but because of the Taylor series issue I thought it might not exist.

    • @jakobthomsen1595
      @jakobthomsen1595 Рік тому

      By the way: is it possible to write this function in a numerically stable way?
      I mean without the infinities which occur temporarily in intermediate results during the computation due to the 1/x parts near 0 and 1.

  • @YoungPhysicistsClub1729
    @YoungPhysicistsClub1729 Місяць тому +8

    bro really performed surgery on functions

    • @alexrawlings541
      @alexrawlings541 18 днів тому

      Bro really left a comment on a UA-cam video

  • @steves5476
    @steves5476 Рік тому +1

    The interpolation function you used here would actually be very useful for using bezier curves to construct smooth tracks, e.g. for rollercoasters. Cubic beizers are very intuitive to work with, but the acceleration (2nd deriv of the track position) is discontinuous. If you modify the beizer curve's interpolation function from stepped linear to this smoothstep, the acceleration will be continuous. You could use a gradient descent solver to minimize lateral G forces by manipulation of the curve control points!

    • @schobihh2703
      @schobihh2703 Рік тому +1

      the is actually a concept of geometric continuity (which is different to parameter continuitiy which is obviously to severe) of 1st and 2nd derivatives of bezier curves. You can google for it. Quite interesting.

  • @alexakalennon
    @alexakalennon Рік тому

    Awesome
    And then that cliffhanger...
    You Sir, know what you're doing.

  • @peterpoon7805
    @peterpoon7805 Місяць тому

    At 2:24/14:04, the set of 4 equation (simultaneous), last equation f'(-1) = c1 -2c2 +3c3 = - 0.3678 (or -e^-1)

  • @nisiu007
    @nisiu007 18 днів тому

    Me: I need to go to bed earlier
    Also me at 2 am: I wonder how to smoothly connect two functions

  • @joshorton9061
    @joshorton9061 Місяць тому +2

    My brain is smooth now

  • @pnachtwey
    @pnachtwey Рік тому +2

    This is used in motion control. I typically use 3rd and 5th order interpolation

  • @julianw1010
    @julianw1010 Рік тому +11

    Great video, but please, slow down with your speaking and explanations.
    You might know 3blue1brown, and his first videos were extremely rushed, making it very hard to follow. Nowadays, he talks slower, to let the information sink. That's something you could do, too. Maybe add some pauses.
    It's not possible to procress so much information in such a short amount of time if you're not familiar with it. Even I, who took Calculus classes, had a hard time following. So great video, but please, slow down your talking and explanations

    • @olivergolde8435
      @olivergolde8435 Рік тому

      You can always watch it at 0.75, 0.5, or even 0.25 times speed.

    • @insertcreativenamehere492
      @insertcreativenamehere492 8 днів тому

      @@olivergolde8435no, you can’t. It makes it harder to understand anything he’s saying in the first place

  • @nucreation4484
    @nucreation4484 Місяць тому

    Is this related to the concept of partitions of unity? And what if we want to do something else like minimize the length of the interpolation curve? Is there a unique solution? If not, is there some other reasonable constraint that guarantees a unique curve?

  • @domenicolanza130
    @domenicolanza130 Місяць тому

    I gained a follower!

  • @Number_Cruncher
    @Number_Cruncher Рік тому +8

    Nicely explained.

  • @Ardrinsarelwqu
    @Ardrinsarelwqu Місяць тому

    1:52 made me subscribe

  • @sabriath
    @sabriath Рік тому

    this was a lot of work to just simply interpolate the extensions over the timeframe of that extension. Meaning you have an assigned missing part of the graph in which you extend both functions into, you then go from one function to the other, similar to how spline works. If you want true smoothness, then it requires either doubling the missing length or using actual splines but could create 3 answers of the function at some x values. So we have for the simpler approach:
    lerp(a, b, c) = (b-a)*c+a; line interpolation function
    given A as x coordinate for first function f(x) cut off and B as second g(x), we have:
    h(x) = lerp(f(x), g(x), (x-A)/(B-A)); for values between A and B
    no derivative or difficult nonsense needed

  • @MultiAndAnd
    @MultiAndAnd Рік тому

    linear interpolation. mollify.
    if you are not happy that you have modified the original functions at the joining points, just let the given function extend a little further and mollify their linear interpolation with a function with support small enough.