Derivation of the Mass Continuity Equation

Поділитися
Вставка
  • Опубліковано 27 лип 2024
  • 🌎 Website: jousefmurad.com
    📈 APEX Consulting: theapexconsulting.com
    In this video, we will derive the mass continuity equation by having a look at a simple Control Volume (CV). This derivation will then be used for a subsequent video to derive the Navier-Stokes Equations. Animations from Grant Sanderson (aka. 3Blue1Brown) are included.
    ► Part 2 - Derivation of the Navier-Stokes Equations: • Derivation of the Navi...
    ► Part 3 - Derivation of the Energy Equation: • Derivation of the Ener...
    ► PDF of the presentation: / derivation-of-33991149
    ► Grant's Channel: / @3blue1brown
    ONLINE PRESENCE
    ================
    🌍 My website - jousefmurad.com/
    💌 My weekly science newsletter - jousef.substack.com/
    📸 Instagram - / jousefmrd
    🐦 Twitter - / jousefm2
    SUPPORT MY WORK
    =================
    👕 Science Merch: engineered-mind.creator-sprin...
    👉 Become my Patreon: / theengiineer
    🧠 Subscribe for more free videos: bit.ly/2RLmMxq
    RECOMMENDATIONS
    ==================
    🎥 1 Month Free of Skillshare Premium: bit.ly/3E3bXwC
    📕 Books on AI, Data Science & Programming: bit.ly/2I1lUD1 - use "podengineered20" to get a 40% discount!
    🎵 Cinematic Drama - Epic Royalty Free Background Music
    ------------------------------
    As a member of SimScale, some pictures in this video have been used from the SimScale platform. SimScale is the world’s first production-ready SaaS application for engineering simulation, completely cloud-based and easily accessible through a web browser. Try CFD and FEA now by creating a free Community account in minutes: bit.ly/316Aqgt
    Contact:
    If you need help or have any questions or want to collaborate feel free to reach out to me via email: support@jousefmurad.com
    #NavierStokes
    #MassConservation
    #Mathematics
    Time Stamps
    ----------------------
    0:00 - 1:11 : Intro
    1:12 - 3:32 : Reynold's Transport Theorem
    3:33 - 4:25 : Differential Form
    4:26 - 4:55 : Fundamental Equations of Fluid Mechanics
    4:56 - 5:19 : Conservation of Mass
    5:20 - 6:00 : Momentum Equation
    6:01 - 6:08 : Recap Terminology
    6:09 - 6:20 : Control Volume (CV)
    6:21 - 6:33 : Conservation of Mass (in words)
    6:34 - 10:55 : Derivation of the Mass Continuity Equation
    10:56 - 14:58 : Explanation of the Divergence
    14:59 - End : Outro

КОМЕНТАРІ • 86

  • @math.physics
    @math.physics Рік тому +8

    This equation serves as a foundation for many other important concepts in fluid dynamics, and it's intriguing to consider the potential applications of this knowledge in industries such as aerospace, automotive, and power generation. The video not only provides a deeper understanding of the subject matter but also makes one appreciate the elegance and simplicity of the mathematical formulas that govern the natural world.
    As a mechanical engineer who has always been passionate about math and physics, I have always been intrigued by the math of fluid mechanics, and also by modern physics, despite neither relativity nor quantum mechanics were part of any course syllabus at my university. I studied these subjects on the side and found them really inspiring, I would go as far as to say that they gave me a novel perspective on life itself. That prompted me to create some online courses on Quantum Mechanics, Quantum Field Theory, special and General Relativity. It’s not my job of course, but I love talking about these topics and showing the "intution" behind the mathematics.

  • @sangeethsylus2566
    @sangeethsylus2566 Рік тому +1

    I have seen so many videos to understand CFD basics but didn't got the point.You explained it simply.Mainly the divergence and convergence point..Nice example.
    Make more videos.GOD BLESS YOU BRO.

  • @manueljenkin95
    @manueljenkin95 4 роки тому +8

    I'm an Electrical engineer, but I have lots of fascination towards fluid dynamics (and non linearity modelling in general). Thanks a lot for taking your time and effort to make these videos.

    • @JousefM
      @JousefM  4 роки тому +5

      I love to see when people from other fields delve into topics that are not part of their day to day work :) Thank YOU for commenting and watching!

    • @manueljenkin95
      @manueljenkin95 4 роки тому +2

      @@JousefM if you do face a situation where additional electrical/signal processing knowledge is needed, feel free to reach out 🥰.

    • @JousefM
      @JousefM  4 роки тому +3

      @@manueljenkin95 I believe I can make use of that offer in the future :)

    • @manueljenkin95
      @manueljenkin95 2 роки тому

      It’s been a while, hope you’re doing good. Currently learning turbulence modelling!

    • @JousefM
      @JousefM  2 роки тому +1

      Dope! Which resources are you using 🙂

  • @jaimikkahar9162
    @jaimikkahar9162 3 роки тому +5

    This Explanation was sooooo good. Sir!!!!

    • @JousefM
      @JousefM  3 роки тому +2

      Thanks for watching! Feel free to share it with your nerdy friends 🙂

  • @bwowekeith4472
    @bwowekeith4472 8 місяців тому

    Thanks a lot for the great explanation, and especially the intuitive example for divergence 😊

  • @deepaksharma8337
    @deepaksharma8337 4 роки тому +4

    What the heck.... I never thought my maths 3 is filled up with the equations of fluids nse, gauss & Stokes... Man 👨 u are really clearing up my fogs of my btech.
    A loads of thanks brother... Keep un going.. It's really making a huge difference. ☺☺

    • @JousefM
      @JousefM  4 роки тому +1

      Thanks for your feedback my friend! :) Stay tuned for the derivation of the Momentum Equation!

  • @motapothulasneha9605
    @motapothulasneha9605 Рік тому +1

    Thanks!❤
    Your effort to make this video is just speechless..
    BTW your voice is 🫰

  • @bonganindlovundlonu3239
    @bonganindlovundlonu3239 2 роки тому

    Thank you so much. Made it pretty easy

  • @hardiksharda9673
    @hardiksharda9673 Рік тому

    Amazing!
    Thank You!

  • @michaelchantonese
    @michaelchantonese 3 роки тому

    wth....it makes sense! Such a good explanation mate. Keep up the good work.

    • @JousefM
      @JousefM  3 роки тому

      Thanks Michael :)

  • @aabbccdd8954
    @aabbccdd8954 3 роки тому

    Excellent Equation

  • @KhoderAlshaar
    @KhoderAlshaar 4 роки тому +2

    Bro !!! this explanation is just perfect and amazing Plz continue .... lots of love and respect

    • @JousefM
      @JousefM  4 роки тому +2

      Thanks brother :) Appreciate your nice comment!

  • @abubakarkhartum695
    @abubakarkhartum695 Рік тому

    Your explanation on the continuity equation is deep, convincing, and free of ambiguity. Thank you for this piece. Wish you could share me the video to the derivation of the energy equation. This is what the conventional mode of knowledge transfer lacked; visualization of the equations in real life is the key to understanding the physics of any equation and that's what you have been able to bring to the table. Thank once again.

    • @JousefM
      @JousefM  Рік тому

      Thanks my friend!!

  • @gokuls8184
    @gokuls8184 4 роки тому +1

    Cool video 👌👍 good explanation about divergence. Expecting more videos from you😊

    • @JousefM
      @JousefM  4 роки тому

      Thanks my friend! Make sure to share it with your friends who might benefit from it :)

  • @tarifraihan6272
    @tarifraihan6272 2 роки тому

    great man. thanks

  • @sams.1597
    @sams.1597 2 роки тому +1

    This is like a drug for me. I recently shifted from an engineering centric career to corporate strategy consulting. I need more of this in my life!

    • @JousefM
      @JousefM  2 роки тому

      Glad you like it 🙂

  • @rohitsuryawanshi2229
    @rohitsuryawanshi2229 4 роки тому +2

    It's a really great video 🤯🎉 thank you ✌

    • @JousefM
      @JousefM  4 роки тому +1

      Thanks brother!

  • @kamalkhalil118
    @kamalkhalil118 3 роки тому

    This is really very interesting. Many thanks

    • @JousefM
      @JousefM  3 роки тому +1

      Thank you buddy!

  • @kudzaimuganhu928
    @kudzaimuganhu928 3 роки тому +1

    Thank you very much man for the clarified explanations. I am a chemical Eng student n to be honest, you just made my life much easier. Thax a lot.

    • @JousefM
      @JousefM  3 роки тому +1

      Thank you for watching! :)

  • @dilsoman
    @dilsoman 4 роки тому

    Great work... Thanks a lot

    • @JousefM
      @JousefM  4 роки тому

      Thanks for the feedback Dileep!!

  • @techlead3743
    @techlead3743 4 роки тому +1

    Nice one!

  • @vinaynandurdikar2005
    @vinaynandurdikar2005 Рік тому

    Thanks😊

  • @jorgemercent2995
    @jorgemercent2995 3 роки тому +1

    Thank you so much! Would really appreciate it if you could continue doing tutorials of CFD!

    • @JousefM
      @JousefM  3 роки тому +3

      Planned for it ;-) What topics would you suggest?

    • @jorgemercent2995
      @jorgemercent2995 3 роки тому +1

      @@JousefM I am exploring how CFD can help with spray drying :) I would appreciate any advice! Software we have is Matlab.

  • @andrewcarrillo4814
    @andrewcarrillo4814 2 роки тому +1

    In the reynolds transport eqn, what is U? is is the amount of whatever is fluxing through the cross section?

  • @ReasonableSwampMonster
    @ReasonableSwampMonster 2 роки тому

    I have used this explanation to help for my graduation project, thank you!

  • @Abhishek29052
    @Abhishek29052 2 роки тому

    Great video.

  • @julhaskhan1629
    @julhaskhan1629 2 роки тому

    Good lecture ever I have seen

    • @JousefM
      @JousefM  2 роки тому

      Thanks Friend :)

  • @andrefilipeasilva
    @andrefilipeasilva 4 роки тому +2

    @Jousef Murad What books do you recommend to learn CFD by using the FEM instead of FVM (used by Ansys)?
    Thank you and very nice video!!

    • @JousefM
      @JousefM  4 роки тому

      Thanks for your feedback André!
      Here some resources:
      - amzn.to/2HkaXsn
      - link.springer.com/chapter/10.1007/978-3-540-85056-4_10
      - www.researchgate.net/publication/270588439_Finite_Element_Methods_for_Computational_Fluid_Dynamics_A_practical_Guide
      - amzn.to/31XyYiw
      Hope that helps :)

  • @impnavandakar1970
    @impnavandakar1970 Рік тому

    How is Flux negative in the Reynolds Transport Theorem?

  • @sriti_hikari
    @sriti_hikari 4 роки тому +4

    Finally finally finalllyyyyyyyyy!

  • @SAIKRISHNA-it6jv
    @SAIKRISHNA-it6jv 4 роки тому +2

    I really liked and enjoyed the video and the explanation is very crisp.
    I had a doubt from the finishing part, where u mentioned for source, divergence will be positive and vice versa for sink.
    for every control surface the area normal vector will be out of the surface and if any vector field is in the direction of normal vector, it is positive otherwise negative. For source as the velocity vector is out of the control surface (in the direction of normal vector its positive) and for sink velocity is coming towards the center, I mean its opposite to normal vector. so its negative.
    bro, is this explanation is correct.....??
    If not let me know the correct explanation.......
    thanks for the informative video......

    • @JousefM
      @JousefM  4 роки тому +1

      Sounds good and it's actually what I said in the video? :P
      Maybe this helps to solidify your knowledge: ua-cam.com/video/XyiQ2dwJHXE/v-deo.html :)
      And of course thanks for your kind feedback! :)

  • @lupocci
    @lupocci 3 роки тому +1

    Great presentation, I really liked it. Just one note: the slide in which you introduce the incompressible fluid equation is wrong, you do not need constant density in time and space. Density can vary in time and space and the fluid can still be incompressible. And also the definition of steady state you gave is wrong.

    • @JousefM
      @JousefM  3 роки тому +2

      That’s correct so my presentation would be another „special case“ - some books also put it that way but you’re right that I could have mentioned it that in my case it does not but in general tho can vary in time and space. For reference you can have a look in famous fluid mechanics from (I believe) Spurk

  • @AEOFF20
    @AEOFF20 4 роки тому +1

    Yes

  • @2radix774
    @2radix774 3 роки тому

    1:43 what is flux? or where sohuld I read to understand what it is?

  • @parmenides2576
    @parmenides2576 4 місяці тому

    I think the divergence at the source is still 0. The inflow from the tap minus the outflow to the rest of the sink is 0

  • @AstroBrindan
    @AstroBrindan 2 роки тому

    Loved the derivation, straight forward and easy to follow.

  • @jyotiranjanbarik6810
    @jyotiranjanbarik6810 2 роки тому

    I'm a research scholar. I just want to get the way of modelling turbulence from NS equation. Any lecture ??

    • @JousefM
      @JousefM  2 роки тому +1

      Planned for the future 🙂

  • @kitstudent4446
    @kitstudent4446 2 роки тому

    nice videos ! we come from the same school. ;)

    • @JousefM
      @JousefM  2 роки тому

      Grüße gehen raus! :)

  • @bansishah2091
    @bansishah2091 3 роки тому

    can you attach the presentation please ?

    • @JousefM
      @JousefM  3 роки тому

      There you go: www.patreon.com/posts/derivation-of-33991149

  • @younisqurot5541
    @younisqurot5541 3 місяці тому

    thanks for good explanation
    but I wonder where you are from ??

    • @JousefM
      @JousefM  3 місяці тому

      Originally from Germany and now living and running my business consultancy from the Netherlands!

  • @ucheanyanwu5972
    @ucheanyanwu5972 Рік тому

    Wait... I don't get.
    The Mass Continuity equation you derived is different from the one you said is a part of the Navier Stokes equation.
    How come?
    I'm new to CFD. I would really like if you could explain.

    • @JousefM
      @JousefM  Рік тому

      How do you mean it’s different - if you specify I can help 🙂

    • @ucheanyanwu5972
      @ucheanyanwu5972 Рік тому

      @@JousefM the mass continuity equation you talked about in 5:08 is not what you derived in 10:33

  • @ppugalia9000
    @ppugalia9000 3 роки тому

    This video finally showed the real tangible derivation ...

    • @JousefM
      @JousefM  3 роки тому

      Cheers 🙂😉

  • @mohitjoc25
    @mohitjoc25 2 роки тому

    Make lecture of fluid mechanics from basic to advance

    • @JousefM
      @JousefM  2 роки тому +1

      Planned for my new course platform in the future. 🙂

  • @biancastoian382
    @biancastoian382 Рік тому

    Now why can’t my lecturer explain the material like this 🤦🏻‍♀️😂

  • @Henri689
    @Henri689 2 роки тому