Math Olympiad | Can you solve given System of Equations ? | VIJAY Maths

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 7

  • @Quest3669
    @Quest3669 2 дні тому +2

    For real solns.
    X= 8 r 0 ;y= 0 r 8
    Same for other eqn .
    Hence; ? = 0 By anyways

  • @raghvendrasingh1289
    @raghvendrasingh1289 2 дні тому +2

    By Cauchy Schwartz inequality (ax+by)^2

  • @abeerkale566
    @abeerkale566 19 годин тому

    Another way,
    For a very generalised answer of a=b and x=y
    a^2 + b^2 = 169 so a=b = 13/root2
    similarly x=y=8/root2
    so ax-by=0

  • @key_board_x
    @key_board_x День тому +1

    ax + by = 104
    (ax + by)² = 104²
    a²x² + 2abxy + b²y² = 104² → given: x² + y² = 64 → y² = 64 - x²
    a²x² + 2abxy + b².(64 - x²) = 104² → given: a² + b² = 169 → b² = 169 - a²
    a²x² + 2abxy + (169 - a²).(64 - x²) = 104²
    a²x² + 2abxy + 10816 - 169x² - 64a² + a²x² = 10816
    2a²x² + 2abxy - 169x² - 64a² = 0
    2abxy = 64a² + 169x² - 2a²x² ← memorise this result
    ay = (64a² + 169x² - 2a²x²)/2bx
    ay - bx = [(64a² + 169x² - 2a²x²)/2bx] - bx
    ay - bx = [64a² + 169x² - 2a²x² - (bx * 2bx)]/2bx
    ay - bx = [64a² + 169x² - 2a²x² - 2b²x²]/2bx
    ay - bx = [64a² + 169x² - 2x².(a² + b²)]/2bx → given: a² + b² = 169
    ay - bx = (64a² + 169x² - 338x²)/2bx
    ay - bx = (64a² - 169x²)/2bx ← equation (1)
    Restart from the memorized result
    2abxy = 64a² + 169x² - 2a²x²
    bx = (64a² + 169x² - 2a²x²)/2ay
    ay - bx = ay - [(64a² + 169x² - 2a²x²)/2ay]
    ay - bx = [(ay * 2ay) - (64a² + 169x² - 2a²x²)]/2ay
    ay - bx = [2a²y² - 64a² - 169x² + 2a²x²]/2ay → given: x² + y² = 64 → y² = 64 - x²
    ay - bx = [2a².(64 - x²) - 64a² - 169x² + 2a²x²]/2ay
    ay - bx = (128a² - 2a²x² - 64a² - 169x² + 2a²x²)/2ay
    ay - bx = (64a² - 169x²)/2ay → recall (1): ay - bx = (64a² - 169x²)/2bx
    (64a² - 169x²)/2bx = (64a² - 169x²)/2ay
    2ay.(64a² - 169x²) = 2bx.(64a² - 169x²)
    ay.(64a² - 169x²) = bx.(64a² - 169x²)
    ay = bx
    ay - bx = 0

  • @SGuerra
    @SGuerra День тому +1

    A questão é bonita. Parabéns pela escolha. Brasil Novembro de 2024.