Part 1-Decision Tree Classifier Indepth Intuition In Hindi| Krish Naik

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 73

  • @krishnaikhindi
    @krishnaikhindi  2 роки тому +8

    We are happy to announce iNeuron is coming up with the 6 months Live Full Stack Data Analytics batch with job assistance and internship starting from 18th June 2022.The instructor of the course will be me and Sudhanshu. The course price is really affordable 4000rs Inr including GST.
    The course content will be available for lifetime along with prerecorded videos.
    You can check the course syllabus below
    Course link: courses.ineuron.ai/Full-Stack-Data-Analytics
    From my side you can avail addition 10% off by using Krish10 coupon code.
    Don't miss this opportunity and grab it before it's too late. Happy Learning!!

  • @netviz8673
    @netviz8673 3 місяці тому +14

    decision tree for both classification regression here classification. 2 techniqiues. ID3 and CART. In Cart the decision tress spilts into binary trees. a)Entropy and Gini Index(Purity spirit) b) Information Gain(feature decision tree split). To check for Pure split two techniques called Entropy and Gini impurity are used and second technique called INformation gain (how the features are selected) is used.
    When H(S) is zero then that is pure split. And when H(s) is 1 then that is impure split ie equal distribution (eg 3yes and 3nos). The range of entropy remains between 0 to 1.
    In impure split the Gini impurity comes out to be 0.5 and in pure split it is 0. So the gini impurity ranges between 0 to 0.5. So in impure split the max value of gini impurity is 0.5 and in pure split it is 0.
    gini impurity is preferrable over entropy because of involvement of log it may slow down
    Now if you have multiple features, you use information gain to know how to make the tree using the given features whether which feature will start and which one will follow later. The feature starting with which the information gain calculation comes out to be the most should be the one with which the decision tree should be started.

  • @harshdeepjaggi9715
    @harshdeepjaggi9715 Рік тому +2

    wonderful explanation sir.... I'm already enrolled in Data Science with one of the edtech of India... no doubt waha ke teachers bhi accha padhate par jo english mei content hai wo mind mei ek baar mei acche se nhi jaata... ye content hindi wala raise ghus gya mind mei ki bus ab hamesha yaad rhega... Thankyou for your efforts..

  • @prathameshekal7308
    @prathameshekal7308 Рік тому +4

    मंडळ आभारी आहे

  • @jasonbourn29
    @jasonbourn29 Рік тому +5

    Thanx sir in Hindi explanations you tend to cover topics better(English vedios are also of far better quality than anyone else)

  • @pritamrajbhar9504
    @pritamrajbhar9504 Рік тому +2

    It is one of the best and simplest explanations till far

  • @Keep_Laughfing
    @Keep_Laughfing 2 роки тому

    Sir aise hi video bnate rhiye apko shayd pta bhi nhi hogaa ki ye aapki kitni bdi help h DATA SCIENCE lovers ke liye.
    Dil se dhanyvaad 🙏🙏🙏

  • @patelanjali2909
    @patelanjali2909 Рік тому +1

    your teaching skill awesomwe.

  • @utkarsh5165
    @utkarsh5165 7 місяців тому

    Thank you Krish for Crystal Clear Explanation.❤

  • @GopalKrishna-p4m
    @GopalKrishna-p4m Рік тому

    after one an era No one will beat you sir !! incredible explanation thankyou so much sir

  • @palakgrover9925
    @palakgrover9925 11 днів тому

    Amazing Explanation 😃

  • @akashlinganwar4810
    @akashlinganwar4810 Рік тому +1

    hello krish sir... your explanation is easy to understand and anyone can learn easily..thank you sir...😊

  • @sauravsahay8803
    @sauravsahay8803 7 місяців тому

    You make everything look so easy

  • @IrfanSaleem541
    @IrfanSaleem541 4 місяці тому

    Thanks a lot. Love and Respect from Oman

  • @aamiransarii
    @aamiransarii 11 місяців тому

    Many, Many Thanks .....so lovely of you

  • @RiteshBhalerao-b2v
    @RiteshBhalerao-b2v Рік тому +1

    Great explaination...hard to find anywhere else👌👌

  • @Er_IT_prashantjha
    @Er_IT_prashantjha 5 місяців тому

    Bohot achha explain krte ho Sir aap 👌🏻💯

  • @adityatiwari7287
    @adityatiwari7287 8 місяців тому

    Awesome Explanation....Thanks A Lot....Keep It Up !!!

  • @sandeepbehera3605
    @sandeepbehera3605 Рік тому +1

    wonderful explanations sir no one can explain like you...🙏🙏🙏
    thankyou..sir😇

  • @mainakseal5027
    @mainakseal5027 Рік тому

    what an amazing tutorial...hats off sirji!!!...

  • @maths_impact
    @maths_impact 2 роки тому

    Wonderful explanation given by you sir in hindi.

  • @ruhiraj9551
    @ruhiraj9551 Рік тому

    Hello Krish sir ..thanku so much 🙏 for a very excellent explanation .

  • @maukaladka4100
    @maukaladka4100 2 роки тому +1

    Worth watching😍😍😍

  • @DrZubairulIslam
    @DrZubairulIslam 2 місяці тому

    Thanks Krish, Best Ever Video, Wao.

  • @AbhishekSharma-cj9to
    @AbhishekSharma-cj9to Місяць тому

    this is really amazing sir 🙏

  • @ketanitaliya9493
    @ketanitaliya9493 Рік тому

    Thanks it is really helpful and easy to understand

  • @katw434
    @katw434 2 роки тому

    Thanks sir please continue this series

  • @SumitJindal-e3k
    @SumitJindal-e3k Рік тому +1

    That was awesome

  • @arunchougale5927
    @arunchougale5927 2 роки тому

    Very Good explained by you .it is lot help me Thank u very much

  • @vidvaanwithromi5213
    @vidvaanwithromi5213 Рік тому

    wonderfully explained sir!

  • @jaiprakashsingh756
    @jaiprakashsingh756 Рік тому

    sir, I really find your videos very helpful. thanks a lot.

  • @dhavalsukhadiya8654
    @dhavalsukhadiya8654 7 місяців тому

    great explaination sir

  • @AjmalShah-s7n
    @AjmalShah-s7n 22 дні тому

    Thank you sir G

  • @girishgogate2733
    @girishgogate2733 2 роки тому

    Thankyou krish sir ........

  • @osamaosama-vh6vu
    @osamaosama-vh6vu 2 роки тому

    Your legend deae sir thank u be happy 😍

  • @SonuK7895
    @SonuK7895 2 роки тому

    Very well explained sirjiiii

  • @BikashKonwar-w7q
    @BikashKonwar-w7q Рік тому +1

    In Entropy formula summation of p(x) * log2(p(x))

  • @tuhinbarai7592
    @tuhinbarai7592 Рік тому

    thank you sir..its to understand...

  • @bryan4592
    @bryan4592 3 місяці тому

    Amazing video sir

  • @gurpreetkaur-pf1bf
    @gurpreetkaur-pf1bf 6 місяців тому

    Amazing ❤

  • @mrityunjayupadhyay7332
    @mrityunjayupadhyay7332 2 роки тому

    Great explanation

  • @abhiWorldIN
    @abhiWorldIN 3 місяці тому

    Awesome video

  • @nisho404
    @nisho404 11 місяців тому

    in one word bosssss

  • @anusuyaghosal6961
    @anusuyaghosal6961 7 місяців тому

    sir you said H(s) is the entropy of root node but i think it is the entropy of target attribute

  • @meenalpande
    @meenalpande Рік тому

    Nice explanation

  • @krishj8011
    @krishj8011 6 місяців тому

    nice tutorial

  • @Pankaj_Khanal_Joshi
    @Pankaj_Khanal_Joshi 11 місяців тому

    Sir sklearrn and seaborn ka video banaiye . thank u

  • @maths_impact
    @maths_impact 2 роки тому

    Wonderful

  • @pkumar0212
    @pkumar0212 3 місяці тому

    👌

  • @jasanimihir4994
    @jasanimihir4994 2 роки тому +6

    As always Very well explained.
    I have one query sir. You told that if the dataset is very big then use gini index otherwise entropy is fine. But finding the entropy is must for the information gain as no mention of Gini index in information gain formula. So is it possible to use gini index to find information gain?
    Kindly throw light on that. 😊

    • @shaiqmahmood
      @shaiqmahmood Рік тому

      There is a way to calculate the Information Gain using Gini index as well.

  • @razashaikh8698
    @razashaikh8698 2 роки тому +2

    Sir, can we find information gain using ginny impurity?

  • @abhishekbhad4029
    @abhishekbhad4029 9 місяців тому

    Very nice explanation sir.i have one question how to get intership as no one is hiring for fresher

  • @prerakchoksi2379
    @prerakchoksi2379 2 роки тому

    wow

  • @neelkalyani7849
    @neelkalyani7849 6 місяців тому

    In calculating information gain, can we use gini impurity instead of entropy?

  • @sugandhaarora8174
    @sugandhaarora8174 3 місяці тому

    is this required for data analyst role?

  • @vatsalshingala3225
    @vatsalshingala3225 Рік тому

    ❤❤❤❤❤❤❤❤❤❤

  • @priyanshupokhariya8866
    @priyanshupokhariya8866 Рік тому +1

    0*log0 is undefined how is it coming 0??

  • @rushikeshwaghmare3446
    @rushikeshwaghmare3446 11 місяців тому

    Sir acc to external sites gini impurity ranges from 0-1

  • @VikasSingh-nq5yx
    @VikasSingh-nq5yx 2 роки тому +1

    Sirrrr.... ❤ I have a question 🙋!
    If interviewer ask a question why we are using minus ( - ) sign in Entropy? Please reply........ ❤

    • @saranshsehrawat8544
      @saranshsehrawat8544 2 роки тому

      its formula

    • @neeraj.kumar.1
      @neeraj.kumar.1 2 роки тому

      Don't worry they don't ask these types of mathematical formulas.
      They can ask what is Gini impurity.

  • @SpectreWarfare
    @SpectreWarfare Рік тому

    Video volume is very less. It is difficult to listen

  • @ShivamSharma-if1oh
    @ShivamSharma-if1oh 2 роки тому

    My answer of Entropy is coming 0.6 not 1

  • @aaqibafraaz6215
    @aaqibafraaz6215 2 роки тому

    Hello sir

  • @importantforlifeyasharora9042
    @importantforlifeyasharora9042 13 днів тому

    What a definition, entropy ranges 0 to 1 and ginni impurity ranges between 0 to 0.5.😂