Applied Linear Algebra: Tensor Decompositions

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 21

  • @ronniec8805
    @ronniec8805 3 роки тому +7

    Professor Kutz, thank you for your whole series of lectures. I learnt quite a lot from the whole series. I am so jealous of your students who attend your courses with privilege.

  • @speedbird7587
    @speedbird7587 11 місяців тому

    Very interesting , delighting and wonderful lecture. I enjoyed it very much. Thanks

  • @hiranabe
    @hiranabe 2 роки тому

    Great lecture, thank you! I came here after Gilbert Strang's MIT, was struggling with tensor in an engineering context. and found this lecture is suitable for the audience, too !!

  • @jimlbeaver
    @jimlbeaver 4 роки тому +1

    Great stuff! Thanks for the clear explanation. Your students are lucky to have you

  • @zzzzzzzmr9759
    @zzzzzzzmr9759 Рік тому

    Thank you! Very intuitive and easy understanding lecture.

  • @supersweetshera
    @supersweetshera 3 роки тому +3

    That one direction pun :))

  • @OMGshinyobject
    @OMGshinyobject 2 роки тому

    Thanks so much professor kutz this has helped me understand some of the post processing funtions that can be applied to EEM spectra (im a photochemist)

  • @alejandrolozada6530
    @alejandrolozada6530 Рік тому

    Great lecture!

  • @franciscojavierramirezaren4722
    @franciscojavierramirezaren4722 4 роки тому

    Thanx for sharing, waiting for next video!👍👍👍

  • @zoltangal3793
    @zoltangal3793 4 роки тому +1

    Great extension of SVD in multidimensional space.

  • @KALLAN8
    @KALLAN8 11 місяців тому

    Thank god for this video.

  • @NeoZondix
    @NeoZondix 11 місяців тому

    So clear. Thanks

  • @weipingshi77845
    @weipingshi77845 2 роки тому

    Excellent lecture! By the way, you look like actor Brennan Brown.

  • @phmfthacim
    @phmfthacim 2 роки тому

    This is so helpful!

  • @calcifer464
    @calcifer464 4 роки тому +1

    tell us about tensor networks and blow our minds

  • @payamkhorramshahi5726
    @payamkhorramshahi5726 3 роки тому

    Thank you so much for great explanation ! I am just a little confused on how you would calculate the singular values in case of 3d tensors ? arent there supposed to be a different singular values along each dimension ?

  • @RuqiyaGhafoor
    @RuqiyaGhafoor 11 місяців тому

    how to calculate singular values of 3rd or higher order tensor????

  • @aidanokeeffe7928
    @aidanokeeffe7928 4 роки тому

    This is pretty cool stuff

  • @TerryBowl
    @TerryBowl 2 роки тому

    What if your points of data is a prime number? That can only be a vector then?

  • @jairjuliocc
    @jairjuliocc 4 роки тому

    Thanks you , good vídeo

  • @肚子疼校长
    @肚子疼校长 3 роки тому

    牛牛牛