A beautiful inequality | International Mathematical Olympiad 2012 Problem 2

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ • 52

  • @pradyumnanr3680
    @pradyumnanr3680 2 роки тому +8

    I never got to take part in an IMO, I couldn't attempt to qualify after my 9th grade. These videos help me get a feel for the quality of problems in IMO, so thanks a lot!

    • @kanonmai
      @kanonmai Рік тому +1

      Where are you, if it's in indonesia then that means you don't pass at pelatnas?

  • @ethanyap8680
    @ethanyap8680 3 роки тому +10

    Yay! One of the few questions you've shown I managed to solve :)
    Really love your videos!

  • @VerSalieri
    @VerSalieri 4 роки тому +6

    Nicely done, I would not have thought of that.. Keep up the good work.

  • @aaravrakesh4076
    @aaravrakesh4076 4 роки тому +6

    Happy New Year! Keep posting, interesting stuff.

  • @mathcanbeeasy
    @mathcanbeeasy 2 роки тому +2

    This is a very interesting problem for students who learn about induction.
    This is the case when the induction is about "the number of the numbers".
    So, in P(n) we have a product of n numbers =1 and in P(n+1) we have the product of n+1 numbers =1.
    This means we can't use the same numbers from P(n), because, if we use that numbers it means that a(n+1) and all others after that are 1.
    Example:
    P(3): 6*1/2*1/3=1
    In P(4) if we use 6, 1/2, 1/3, than the fourth number must be 1. And so on. So, P(4) actually contain four other numbers than P(3).
    So, if in P(n) we have a1*a2*...*an=1
    Then in P(n+1) we must have others
    b1*b2*...*bn*b(n+1)=1.
    So, how can we use P(n)?
    Simple by grouping 2 of that factors.
    c1=b1
    c2=b2
    ...........
    cn=bn*b(n+1)
    Of course, the hard part is the next part, when one of the factors (1+an) is now (1+bn*b(n+1))

    • @aziz0x00
      @aziz0x00 Рік тому +1

      And then 1+b(n)b(n+1)

    • @mathcanbeeasy
      @mathcanbeeasy Рік тому

      @@aziz0x00 yes. Something like in this video. Is the best example of the induction where P(k) does not contain same operations or numbers like P(k+1).
      ua-cam.com/video/d_c28XDy-EY/v-deo.html

  • @alexanderzxc1440
    @alexanderzxc1440 3 роки тому +4

    Truly beautiful problem

  • @Krish-i7q
    @Krish-i7q 6 місяців тому

    How about using weirstrass inquealitiy considering a2a3......an=1 but its not given that a2a3........an

  • @johnnath4137
    @johnnath4137 3 роки тому +9

    I’ve just concocted a nice proof of this result by induction. My solution has been MathTyped and I can only post it as a png or gif image, but You Tube comments slots do not support images, so I can’t upload it.

    • @lqv3223
      @lqv3223 3 роки тому +1

      I really want to see your solution senpai.
      www.techaccents.com/2020/01/send-pictures-on-youtube-comments.html

    • @johnnath4137
      @johnnath4137 3 роки тому +4

      @@lqv3223 I tried to upload both my png and gif images as per your link, but was getting “incorrect format”, and gave up on this. I painfully copied out my image onto an MS Word document - it took ages. Here is my induction proof.
      Assume that for some n ≥ 3 and for some a₂, a₃,….,a(n) with a₂a₃….a(n) = 1, (1 + a₂)²(1 + a₃)³….(1 + a(n))ⁿ > nⁿ. I am now going to prove that the result is true for n + 1. This means that for any choice of (n + 1) a’s (not necessarily the same a’s as before, but in this case we’ll use the same a’s with a(n + 1) = 1) having the product property, the result for (n + 1) a’s holds. In particular, when I am proving the result for for n = 3, though I am going to use the symbols a₂, a₃ as before, they are not the same original a₂, a₃, but the new a₂, a₃ satisfy a₂a₃ = 1. Now (1 + a(n + 1) ⁿ⁺¹ ≥ (2√(a(n + 1))ⁿ2√(a(n + 1) =
      2ⁿ⁺¹((a(n + 1)) ⁿ⁺¹ = 2ⁿ⁺¹ ( recall I have chosen a(n + 1) = 1). We have , (1 + a₂)²(1 + a₃)³….(1 + a(n))ⁿ(1 + a(n + 1)ⁿ⁺¹) > nⁿ2ⁿ⁺¹. Now (n + 1)ⁿ⁺¹ = nⁿ⁺¹((1 + 1/n) ⁿ⁺¹ < n ⁿ⁺¹((1 + 1/1)ⁿ⁺¹ (∵n ≥ 3) = nⁿ2ⁿ⁺¹ → nⁿ2ⁿ⁺¹ > (n + 1)ⁿ⁺¹ . So (1 + a₂)²(1 + a₃)³….(1 + a(n))ⁿ(1 + a(n + 1))ⁿ⁺¹ > nⁿ2 ⁿ⁺¹ >
      (n + 1)ⁿ⁺¹. The result is true for n = 3 ∵ (1 + a₂)²(1 + a₃)³ = (1 + a₂)²(1/2 + ½ + a₂)³ ≥ 2² a₂.3³(∛( a₃/2²))³ = 2² a₂.3³( a₃/2²) = 3³ (with a₂a₃ = 1). So by induction the result is true ∀n ∈ ℕ and ∀ a₂, a₃,….,a(n) with a₂a₃….a(n) = 1.

    • @lqv3223
      @lqv3223 3 роки тому +2

      @@johnnath4137 Amazing solution! Thanks for putting in the effort.

    • @ImaginaryMdA
      @ImaginaryMdA 3 роки тому +2

      Oh, I thought you were making a fermat's last theorem joke. :P

    • @johnnath4137
      @johnnath4137 3 роки тому +2

      @@ImaginaryMdA Perhaps it was Fermat himself who made the joke and no one saw it for what it was for 400 years.

  • @cr1216
    @cr1216 3 роки тому +3

    This seems unbelievably easy for an IMO problem. As soon as I see the word AM-GM I immediately came up with the solution even without writing anything down. Maybe connecting the problem with using AM-GM is the hard part.

    • @ShefsofProblemSolving
      @ShefsofProblemSolving 3 роки тому +2

      Yeah the big idea was thinking of Am-Gm in the first place. It's a one creative idea problem.

  • @harshvadher9234
    @harshvadher9234 2 роки тому +1

    I solved it by other method but still this holds totally strong than other methods I did with it.

  • @mathematicalolympiad9157
    @mathematicalolympiad9157 4 роки тому +4

    Can you make a video about IMO 2019 SL A2

  • @Maryam-Mehr
    @Maryam-Mehr 4 роки тому +1

    Great problem, thank you!

  • @amagilly
    @amagilly 2 роки тому

    Very nice techniques in this problem.

  • @吳沛洋-f8y
    @吳沛洋-f8y 2 роки тому

    elegant solution

  • @oo-sama3444
    @oo-sama3444 4 роки тому +1

    Plz can u solve the imo p6 1988
    I saw a lot of videos about it and i didnt understand it well

  • @ГригорийЕ-в5ь
    @ГригорийЕ-в5ь 2 роки тому

    Bruh what a2 a3 a4 and other can be except 1?

  • @amirb715
    @amirb715 3 роки тому +1

    brilliant !

  • @BesnikDule-fl4yb
    @BesnikDule-fl4yb 6 місяців тому

    I think was a very easy imo problem.

  • @bernat8331
    @bernat8331 3 роки тому

    Holder Inequality also kills the problem

  • @VIKASVERMA-nk8uw
    @VIKASVERMA-nk8uw 3 роки тому

    Great

  • @VIKASVERMA-nk8uw
    @VIKASVERMA-nk8uw 3 роки тому

    Keep going

  • @gurjot5566
    @gurjot5566 4 роки тому +2

    Can you recommend me some books for mathematical Olympiad?

    • @letsthinkcritically
      @letsthinkcritically  4 роки тому +3

      Sure!! I am going to share some Maths books that I enjoy in later posts

  • @soupayandasgupta8185
    @soupayandasgupta8185 3 роки тому

    Just beauty

  • @ИбадатЖұмабек
    @ИбадатЖұмабек 4 роки тому +3

    nice

  • @brumarul7481
    @brumarul7481 3 роки тому

    You are a fucking machine , jesus.

  • @picontroversial308
    @picontroversial308 2 роки тому

    Grrrt

  • @angelishify
    @angelishify Рік тому

    Zelo originalno.