Brazil National Mathematical Olympiad 2010 Problem 1

Поділитися
Вставка
  • Опубліковано 29 гру 2020
  • #MathOlympiad #Irrational #FunctionalEquations
    Here is the solution to Problem 1 in the Brazil National Mathematical Olympiad 2010!
    ------------------------------------------------
    Follow my Instagram page for more Maths :)
    Link: / lets.think.critically
    ------------------------------------------------
    I share Maths problems and Maths topics from well-known contests, exams and also from viewers around the world. Apart from sharing solutions to these problems, I also share my intuitions and first thoughts when I tried to solve these problems.
    Subscribe: ua-cam.com/users/letsthinkcr...
    Email me (address in video) your suggestions! lets.think.critically.27@gmail.com

КОМЕНТАРІ • 45

  • @oskarjung6738
    @oskarjung6738 3 роки тому +21

    Even though the question is so trivial, the proof is so beautiful. Its questions like these that gives you the 'aha' moments, and make you love maths.

  • @JoseFernandes-js7ep
    @JoseFernandes-js7ep 3 роки тому +17

    I think the condition for irrational numbers has the porpoise of avoiding nice numbers like 0 or 1.

  • @HagenvonEitzen
    @HagenvonEitzen 3 роки тому +16

    If s² > 4p, then there are reals a,b with a b = p and a + b = s (namely, the roots of x² - s x + p).
    Let p= -1 and s arbitrary irrational. Then a and b must both be irrational, hence the functional equation gives us f(s)=f(-1).
    Now let p = -sqrt(2) and s any rational. Again, a and v must both be irrational, and the functional equation gives us f(s) = f(-sqrt(2)), and by the previous, we know already that f(-sqrt(2)) = f(-1).

  • @iurialmeida8979
    @iurialmeida8979 3 роки тому +8

    maaaan, i cant belive i was able to do it, thank you!

  • @yaseengharehmohammadloo9955
    @yaseengharehmohammadloo9955 3 роки тому +18

    thanks for solving theses beautiful problems.

  • @matthismercier281
    @matthismercier281 3 роки тому +5

    How and with which support do you think I should train to solve this kind of problems ?
    Love your channel btw, wondeful work !

  • @matheuspedro3745
    @matheuspedro3745 3 роки тому +30

    Thanks for the solution, I'm Brazilian and I'm studying for this contest.

  • @DaveyJonesLocka
    @DaveyJonesLocka 3 роки тому +1

    Beautiful work

  • @user-yw6kl8tp2c
    @user-yw6kl8tp2c 3 роки тому

    Great video!
    From you accent I guess you are from Hong Kong or similar places. Did I guess it right? Cuz I’m from Hong Kong and I absolutely love the channel

  • @zakzaki9542
    @zakzaki9542 3 роки тому +8

    Would it not be enough to say that f(a+b+0)=f(a+b)=f((a+b)0)=f(0), and that a+b can add to make any real number, therefore f(X)=k for all real numbers???

    • @giovanicampos4120
      @giovanicampos4120 3 роки тому +19

      since 0 is not irrational, then we can't do f((a+b)+0) = f((a+b)0), since f(a + b) = f(ab) holds for all a and b that are irrationals.

    • @zakzaki9542
      @zakzaki9542 3 роки тому +5

      @@giovanicampos4120 yes you are correct. Thanks a lot

  • @user-qn4fs2og7k
    @user-qn4fs2og7k 2 роки тому

    thank you sir ~

  • @aashsyed1277
    @aashsyed1277 3 роки тому

    So awesome

  • @quirtt
    @quirtt 3 роки тому

    Cool problem

  • @djvalentedochp
    @djvalentedochp 3 роки тому +1

    nice video I'm from brazil

  • @pedrofarinazzo5669
    @pedrofarinazzo5669 3 роки тому +1

    I don't get it. Why are you assuming all those functions are equal to f(0)?

  • @Kyojuro-bf3bf
    @Kyojuro-bf3bf Місяць тому

    Isnt it possible to first ignore the irrationality condition, then find all functions for all reals such that f(ab) = f(a+b). The only such function satisfying this is f(x) = c, a constant. So it also satisfies for any irrational a and b since the irrationals are a subset of the reals. ?

  • @anasuit1111
    @anasuit1111 3 роки тому +7

    irrational :無理数

  • @elobez
    @elobez 6 місяців тому

    {rational} + {irrational} = {irrational}.
    Can we not let a = 1 and b be any irrational. Then:
    f(b) = f(b+1), both sides mapping irrational to irrational and true for all b. Does this prove that f maps to a constant?

    • @scion.
      @scion. 4 місяці тому

      The statement only says that f(a+b) = f(ab) when a and b are irrational, so you can't choose a=1.
      On top of that, even if you could, f(b) = f(b+1) is not a sufficient condition to conclude that f is constant, f could be any function with period 1. For example, cos(2*pi*x) or frac(x) would be non-constant functions that satisfy your condition.

  • @tsunningwah3471
    @tsunningwah3471 3 роки тому

    香港口音好親切

  • @joelgerlach9406
    @joelgerlach9406 3 роки тому +5

    But if it holds for all real numbers, then it holds for all irrational numbers. So this condition is useless.

    • @TechToppers
      @TechToppers 3 роки тому +12

      But you don't know before you solve the problem.

    • @angelmendez-rivera351
      @angelmendez-rivera351 3 роки тому +4

      It doesn't say it holds for all real numbers.

    • @moonlightcocktail
      @moonlightcocktail 3 роки тому +2

      There could be a function that works only for irrational numbers but not for rationale, for example the piecewise f(x) = a solution proposed here if x irrational and 1 otherwise

    • @TtTt-ur5hd
      @TtTt-ur5hd 3 роки тому +2

      You stupid?

  • @krishnasimha8097
    @krishnasimha8097 3 роки тому

    e^a e^b=e^a+b

    • @landsgevaer
      @landsgevaer 3 роки тому +6

      Assuming you mean e^a e^b = e^(a+b) , this is an example of f(a)f(b) = f(a+b), but not f(ab) = f(a+b) as asked. Moreover, it wouldn't show these were *all* such functions.

  • @OOO-ef1ps
    @OOO-ef1ps 3 роки тому

    A familiar accent🤔

  • @finmat95
    @finmat95 3 роки тому +4

    What a terrible calligraphy

  • @omenuawo
    @omenuawo 2 роки тому

    Cool problem