Linear Algebra - Lecture 19 - The Matrix of a Linear Transformation

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ •

  • @genericblackmale8665
    @genericblackmale8665 4 роки тому +24

    Perfect and succinct explanation. No other textbook, video or notes online explain this concept as succinctly as you did. You're a great educator and thanks for sharing!

  • @tasnimmeem1158
    @tasnimmeem1158 3 роки тому +2

    Great explanation. I went through multiple resources to get a working understanding of this topic for my upcoming test, by far this is the best. Thank you. This deserves more views.

  • @dakshchhabra5975
    @dakshchhabra5975 4 роки тому +3

    I really liked the way how you explained all of these in a very easy way.
    Thank you!

  • @eyobgizachew2300
    @eyobgizachew2300 Рік тому

    I love you, whoever you are. You are an amazing teacher.

  • @lucci3319
    @lucci3319 2 роки тому +1

    thanks again sir!!!! nice and to the point explanation!! so grateful to find ur channel. short and best ever linear algebra explanations!!!!!!

  • @akshattomar6100
    @akshattomar6100 Рік тому

    you are genoius james, day after tomorrow is my linear algebra exam and i am damn happy to found you here .

  • @highbee700
    @highbee700 2 роки тому

    You're the best! Your tutorials are very helpful

  • @seymurmirzeliyev
    @seymurmirzeliyev 2 роки тому

    Just one word man,"PERFECT"

  • @MrWahsabii
    @MrWahsabii 6 років тому +11

    James, did you use Linear Algebra and Its Applications by David C. Lay with the production of your video material?

    • @Coburah
      @Coburah 5 років тому +3

      Yes.

    • @swiftsushi
      @swiftsushi 3 роки тому +3

      @@Coburah Thanks James

    • @Coburah
      @Coburah 3 роки тому +2

      @@swiftsushi It's quite obvious that JAMES has used that textbook

    • @swiftsushi
      @swiftsushi 3 роки тому +3

      @@Coburah I appreciate your follow up comment James

    • @Coburah
      @Coburah 3 роки тому +3

      @@swiftsushi no prob, mr Sushi

  • @TechEnlighten-g2m
    @TechEnlighten-g2m Рік тому

    still helpful
    Respect you sir for these lectures

  • @olivier306
    @olivier306 3 роки тому

    This was extremely helpful again, thanks!!

  • @MuhweziBright-x4t
    @MuhweziBright-x4t 4 місяці тому

    I like your explanation

  • @chicagomike6666
    @chicagomike6666 3 роки тому

    Great video--great series--Question: I'm working on a assembly language "lookup" for a pump control system-is there a "library" of standard Transformation matrices? It would certainly save me some time...

  • @Coburah
    @Coburah 5 років тому +2

    He says multiple times that any linear transformation is a matrix transformation, but as I understand it, only transformations from Rn to Rm are considered matrix transformations, which implies that there are linear transformations that are not matrix transformations.

    • @HamblinMath
      @HamblinMath  5 років тому +2

      At this point in the course, the defintion of "transformation" is a function from R^n to R^m. We don't generalize that definition to other vector spaces until later in the course.

    • @Coburah
      @Coburah 5 років тому +5

      @@HamblinMath that makes sense. I just wanted to plant a flag there in case someone else was also confused by the contradiction between what was said and what the book says. I really appreciate your lectures, thanks!

  • @Autumn-qc5rc
    @Autumn-qc5rc 3 роки тому

    great job

  • @lucci3319
    @lucci3319 2 роки тому

    hello james! can u plz tell us about the rotation of 'Phy' around origin in clockwise rotation. i didn't understand this concept.

    • @HamblinMath
      @HamblinMath  2 роки тому

      I'm not sure what you're asking, exactly, but this might be helpful: en.wikipedia.org/wiki/Rotation_matrix

  • @tijns4185
    @tijns4185 5 років тому +1

    Very helpfull, thanks!

  • @Nelson-ys6tk
    @Nelson-ys6tk Рік тому

    damn why are good explanations like
    this not common in uni's

  • @1UniverseGames
    @1UniverseGames 3 роки тому +1

    Sir can I have your email address to share a problem, can't solve it