Amazing properties of fractals: Koch Snowflake perimeter

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 47

  • @NancyHey
    @NancyHey 12 років тому +4

    I love this, I always foung that fascinating that an object with a finite area can have an infinite perimeter!

  • @tompster
    @tompster 14 років тому

    The fact that I love math probably increases how much I enjoyed this video but it was excellent.

  • @spaciane
    @spaciane 12 років тому

    Very well explained! You make it easy to understand something that, at first, seems unbelievable.

  • @MichaelFrancis95
    @MichaelFrancis95 13 років тому

    Wow man your vids are awesome!
    Im not that much of a maths brain but you make it both much more fun to learn and also much easier to learn.

  • @bluecobra95
    @bluecobra95 14 років тому

    You can't just throw out that there is such thing as 1.26 dimensional and just leave it there! Glad to see more fractal videos!

  • @blooplip
    @blooplip 12 років тому

    Found myself looking at the infinite area outside of the snowflake! Fun!!!!!

  • @forrest0no2
    @forrest0no2 12 років тому

    Please make more videos man
    I love this stuff.

  • @holyfamilycrusader3512
    @holyfamilycrusader3512 3 роки тому

    Okay, this is super interesting

  • @The1chihira
    @The1chihira 13 років тому

    the patern continues on for ever great

  • @FoxyFilmsProductions
    @FoxyFilmsProductions 11 років тому +1

    As much as I love the Sierpinski, that's a really nice Koch

  • @wvb93
    @wvb93 14 років тому

    I DEMAND MOAR!

  • @Royvan7
    @Royvan7 5 років тому

    a strait line segment is self. if i zoom in on a strait line segment i will find that at all scales it looks perfectly like the whole. is a strait line a fractal?
    i was under the impression the definition for a fractal was to have a fractional fractal dimension at either all scales or all practical scales.

  • @Troleeboy
    @Troleeboy 14 років тому

    that is really interesting keep making vids like this

  • @ben1996123
    @ben1996123 13 років тому

    the area of the koch snowflake is s^2 * √0.48 where s is the original side length.

  • @sundarchannel
    @sundarchannel 12 років тому

    great video, but does n't perimeter needs to be constant on the fractals?? the line can be divided into 3*(1/3+1/3+1/3)=3.

  • @braija
    @braija 2 роки тому

    How would a four dimensional fractal look in 3d?

  • @nintendomario007
    @nintendomario007 13 років тому

    @fractalmath in the snow flake on part 3 you have 6 not 3.

  • @parxisxisxis
    @parxisxisxis 12 років тому

    I just... love you

  • @braija
    @braija 2 роки тому

    How would one prove this?

  • @Lebensbeichte
    @Lebensbeichte 11 років тому

    I meant like a guttural, deeper cat hiss. Anyway you are probably right.
    With your crazy letters which don't sound at all. :D

  • @lizokitten2
    @lizokitten2 11 років тому

    Yes but the perimeter has (Hausdorff) dimension > 1, so it is somewhat space-filling. Arguably, it does have a little thickness. Of course, the line segments used to construct it do not!

    • @Royvan7
      @Royvan7 5 років тому

      nah, he is actually right with that one. fractal dimension has a fractional value for fractals. that's where the name fractals comes from. notably this is a different definition of 'dimension' then the commonly used one. so, no, being 1.26D does not imply thickness. also, what do the line segments dimensionality matter? the generating rule is applied infinitely there are no lines left once it is done they've all been replaced with the koch curve.

  • @20BloodyMess
    @20BloodyMess 12 років тому

    that has to mean that there are particals smaller than atoms??

  • @lizokitten2
    @lizokitten2 11 років тому

    firstly, no, it certainly does not. secondly, there are 4 segments of length 1/3 the original. this is why perimeter is infinite, and why (Hausdorff) dimension is greater than one.

  • @lizokitten2
    @lizokitten2 11 років тому

    or any infinite amount of area, for the matter!

  • @Gamesforyourmind
    @Gamesforyourmind 12 років тому

    As the video approaches 6:22 my mental confusion approaches infinity. Just joking, infinity is great to ponder.

  • @josephdinhbestprofile
    @josephdinhbestprofile 12 років тому

    3:51 smiley face

    • @EHMM
      @EHMM 3 роки тому

      3:51

  • @guitarockdude
    @guitarockdude 13 років тому

    Triforce within a triforce... That's some inception shit

  • @nightman21131
    @nightman21131 12 років тому

    MEH IS CONFUZZLED! :D

  • @RobertPetrick117
    @RobertPetrick117 14 років тому

    1:16 TRIFORCE OF TRIFORCES OF TRIFORCES OF TRIFORCE!!!!

    • @EHMM
      @EHMM 3 роки тому

      1:16

  • @DerQuasar07
    @DerQuasar07 11 років тому

    Thank You at time 4:29 think i am is it at proportion from Golden Cut 1,6..... 777³ *#*#*

  • @Lebensbeichte
    @Lebensbeichte 11 років тому

    Ch in german is pronounced like the sound you make, when you want to clear your throat very softly with an continuing stream of air.
    It's like a guttural "H" sound. Kinda like the hissing of a cat.

  • @ericX97
    @ericX97 12 років тому

    @kyleisreallycool To infinity and BEYOND!

  • @lizokitten2
    @lizokitten2 11 років тому

    you could, but it would be incorrect.

  • @DerQuasar07
    @DerQuasar07 11 років тому

    Whats that 298.311.997 to nearli at the light speed !!! 777³ *#*#*

  • @lizokitten2
    @lizokitten2 11 років тому

    Oh!! sorry! i don't know that speak :)

  • @Booksds
    @Booksds 11 років тому

    Don't tell Ganon.

  • @GarielBee
    @GarielBee 10 років тому

    .insipring...

  • @lotsagrapes
    @lotsagrapes 14 років тому

    First.

  • @Zakariah1971
    @Zakariah1971 3 роки тому

    Thanks for showing the perimeter sans units. Fail.