^=read as to the power *=read as square root As per question 8^(logx)- 2^(logx)=5! {(2^3)^logx)}- 2^(logx)=120 2^(3logx) - 2^(logx)=120 Let 2^(logx)=R So, R^3-R=(5^3)-5 So, R=5 2^(logx)=5 Take the log log2^(logx)=log5 logx. log2=log5 logx= log5/log2 X= antilog { log5/log2}...May be
Respected Sir, Good evenings. Nicely solved...
Thanks for watching! I'm glad you found it helpful! 💯🙏🤩💕I appreciate your kind words. 🚀🙏✅👏
^=read as to the power
*=read as square root
As per question
8^(logx)- 2^(logx)=5!
{(2^3)^logx)}- 2^(logx)=120
2^(3logx) - 2^(logx)=120
Let 2^(logx)=R
So,
R^3-R=(5^3)-5
So,
R=5
2^(logx)=5
Take the log
log2^(logx)=log5
logx. log2=log5
logx= log5/log2
X= antilog { log5/log2}...May be
Решаем методом устного счета.
2^logx=y
y^3-y=120
y(у-1)(у+1)=120
120=5x4x6
y=5
x=log5.
Good luck!
I ❤ math
x= 210
8^[log(x)]-2^[log(x)]=5!
Domain: x≥1
Let n=log(x)
8ⁿ-2ⁿ=120
(2ⁿ)³-2ⁿ-120=0
Let h=2ⁿ
h³-h-120=0
h³-125-h+5=0
(h³-125)-(h-5)=0
(h-5)(h²+5h+25)-1(h-5)=0
(h-5)(h²+5h+24)=0
h²+5h+24=0
∆=b²-4ac
∆=5²-4•1•24
∆=25-96
∆=-71