If G is Isomorphic to H then G is Cyclic iff H is Cyclic Proof

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 13

  • @goofydog07
    @goofydog07 9 років тому +7

    Crystal clear. Well taught

  • @euler4461
    @euler4461 4 роки тому +1

    Let Q be the group of rationals under addition. Then show that any finitely generated subgroup of Q is cyclic.

  • @oscarbates2528
    @oscarbates2528 5 років тому +1

    Thank you so much! Quick question: what allows us to say that Φ(g^n)=(Φ(g))^n?

    • @TheMathSorcerer
      @TheMathSorcerer  5 років тому +2

      Note ph(g*g) = phi(g)phi(g) = (phi(g))^2 b/c phi is a group homomorphism,, then you can generalize this for any n, phi(g*...*g) = ph(g)*...*phi(g) = (phi(g))^n

    • @TheMathSorcerer
      @TheMathSorcerer  5 років тому +4

      woops missed a step, for clarity, phi(g^n) = phi(g*...*g) = ph(g)*...*phi(g) = (phi(g))^n, there we go:)

  • @khbye2411
    @khbye2411 4 роки тому +1

    thank you!

  • @TheMathSorcerer
    @TheMathSorcerer  10 років тому

  • @lyzerbautista6513
    @lyzerbautista6513 6 років тому +1

    How did pi(g^n) become (pi(g)^n)?

  • @euler4461
    @euler4461 4 роки тому +1

    Hello sir,
    Sir please make a video of this question please