A Continuous Functional Equation

Поділитися
Вставка
  • Опубліковано 3 лис 2024

КОМЕНТАРІ • 12

  • @mystychief
    @mystychief Місяць тому +2

    Looks linear. Suppose f(x)=ax+b, then from equation 1: af(x+y)+b=ax+b+ay+b=a(x+y)+2b. So f(x+y)=(a(x+y)+b)/a=(x+y)+b/a or f(t)=t+c or f(x)=x+c. Since a is obviously 1 then b=c.

  • @scottleung9587
    @scottleung9587 Місяць тому

    Nice!

  • @abshariadam
    @abshariadam Місяць тому +1

    5:05 😂😂😂

  • @marat61
    @marat61 Місяць тому

    f(f(x + y)) = f(x) + f(y)
    let y = 0
    f(f(x)) = f(x) + f(0)
    let t = f(x)
    f(t) = t + C

  • @carly09et
    @carly09et Місяць тому

    I get f(x) = x but I can't say why it is unique (it is in that f(0) = 0)

  • @phill3986
    @phill3986 Місяць тому

    ☮️👍✌️😃😃✌️👍☮️

  • @KanuniSultanSuleyman243
    @KanuniSultanSuleyman243 Місяць тому

    2:49 we find the solution why did you continue?

  • @wernischluep7352
    @wernischluep7352 Місяць тому

    f(0) should be a. you know why...

  • @joysanghavi13
    @joysanghavi13 Місяць тому

    Put y =0 and then x=f^(-1)z. Solve for z. Pretty easy

  • @TheOiseau
    @TheOiseau Місяць тому

    My god, what a convoluted mess. You had the answer at 2:49, why is the video 10 minutes long?