A Functional Equation from Türkiye 🇹🇷

Поділитися
Вставка
  • Опубліковано 4 лис 2024

КОМЕНТАРІ • 16

  • @MortezaSabzian-db1sl
    @MortezaSabzian-db1sl Місяць тому +4

    To a small generalization. If we have an equation like this;
    f(x)+f(u{1/(1-u^(-1)(x)})=v(x)
    where the function u^(-1)(x) is the inverse of u(x).
    Let u^(-1)(x)→x
    f(u(x))+f(u(1/(1-x)))=v(u(x))
    and let f(u(x))=g(x)
    With the following few substitutions we arrive at a system of equations
    g(x)+g(1/(1-x))=v(u(x))
    x→1/(1-x)
    g(1/(1-x))+g((x-1)/x)=v(u(1/(1-x)))
    x→1/(1-x)
    g((x-1)/x)+g(x)=v(u((x-1)/x))
    As result we have;
    1)g(x)+g(1/(1-x))=v(u(x))
    2)g(1/(1-x))+g((x-1)/x)=v(u(1/(1-x)))
    3)g((x-1)/x)+g(x)=v(u((x-1)/x)
    We subtract equation 2 from 3 and add the result to equation 1;
    g(x)=1/2(v(u((x-1)/x))-v(u(1/(1-x)))+v(u(x)))=f(u(x))
    So f(x)=.....
    For example
    u(x)=³√x
    v(x)=x³
    f(x)=1/2((x³-1)/x³-1/(1-x³)+x³)

  • @MortezaSabzian-db1sl
    @MortezaSabzian-db1sl Місяць тому +4

    f(x)+f(1/3_√(1-x³))=x³
    Let and set x³→x
    f(3_√x)+f(1/3√(1-x)=x
    Set and let f(3_√u)=g(u)
    g(x)+g(1/(1-x)=x
    This functional equation has been solved many times
    f(x)=(x⁹-x³+1)/2x³(x³-1)
    f(-1)=1/4
    f(∞)=∞

    • @terracottapie6872
      @terracottapie6872 Місяць тому

      This is interesting. Never seen that g(x) functional equation.

    • @stephenshefsky5201
      @stephenshefsky5201 Місяць тому

      I derived the same general solution using the same substitution!

    • @MortezaSabzian-db1sl
      @MortezaSabzian-db1sl Місяць тому

      @@stephenshefsky5201
      Find my other comment and look, I got a more general look in that comment

  • @scottleung9587
    @scottleung9587 Місяць тому +1

    I went down the route of the second method - like you said, I didn't get anywhere far.

  • @yakupbuyankara5903
    @yakupbuyankara5903 Місяць тому

    1/4

  • @giuseppepapari7419
    @giuseppepapari7419 Місяць тому +1

    2:53. I am confused here: 1/ [ 1/ cube_root(1/2)] should be cube_root(1/2). Or do I miss something?

  • @paulkarch3318
    @paulkarch3318 Місяць тому

    I tried this substitution for x. ((x^3 - 1)/x^3)^(1/3) and got f((1 - 1/x^3)^(1/3))) + f(x) = 1 - 1/x^3 but not sure if this leads anywhere.

  • @BilmeMortaylı
    @BilmeMortaylı Місяць тому +1

    Lan Türkiye

  • @yoav613
    @yoav613 Місяць тому

    Nice and easy😊