Let's Solve A Fun Radical System

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ •

  • @Qermaq
    @Qermaq 10 місяців тому

    Pretty smooth. I took (2), isolated the radical and squared both sides. On the right is just xy, but it's cancelled by half the 2xy on the left. Equation (1) neatly subs into the left side, and we wind up with 133 + 49 = 14(x+y), so x + y = 13. Subbing that into (2) we see xy = 36. Not too many to check, x and y are 4 and 9 WLOG.

  • @yakupbuyankara5903
    @yakupbuyankara5903 10 місяців тому

    (X,Y):(4,9),(9,4)

  • @Hobbitangle
    @Hobbitangle 7 місяців тому

    Let's u=x+y, v=xy
    Then
    u²-v=133
    u-√v=7
    v= (u-7)²=u²-14u+49
    u²-u²+14u-49=133
    u=182/14=13
    v=(13-7)²=6²=36
    By the Viete's Theoreme {x,y} are the roots of the quadratic equation
    z²-13z+36=0
    {x,y}=(13±√(13²-4•36))/2=
    (13±√(169-144))/2=
    (13±√(25))/2=
    (13±5)/2=
    {9;4}
    {x,y}={9;4},{4;9}

  • @mohamedyassine6250
    @mohamedyassine6250 10 місяців тому

    Please I neee the solution:
    Solve:
    √(x³+17)=2x-5+√(x³+8)