Let's Solve A Nice Polynomial System

Поділитися
Вставка
  • Опубліковано 22 січ 2025

КОМЕНТАРІ • 15

  • @PilgrimOfEden
    @PilgrimOfEden Рік тому +1

    Very interesting problem and solutions! I love seeing the same problem solved using different methods. Keep it up!

  • @monkeblazer3154
    @monkeblazer3154 Рік тому

    I have another approach . x(x-y) = 14 , y(x+y) = 60 , multiplying , xy(x^2-y^2) = 840 , but x^2-y^2 = 2xy-46 (obtained by subtracting the equations . Therefore , 2x^2y^2 - 46xy - 840 = 0 , xy = 35 , xy = -12 , when xy = 35 , x = +-7 and y = +-5 and when xy = -12 , x = +-sqrt2 and y = +-6sqrt2

  • @ThePayner11
    @ThePayner11 Рік тому +3

    My solution (using polar coordinates):
    x^2-xy=14
    y^2+xy=60
    Sum them both:
    →x^2+y^2=74
    Let x=r cos⁡θ and y=r sin⁡θ:
    →r^2=74
    →r=±√74
    Find θ:
    →74 cos^2⁡θ-74 sin⁡θ cos⁡θ=14
    →37 cos^2⁡θ-37 sin⁡θ cos⁡θ-7=0
    →37 cos^2⁡θ-37 sin⁡θ cos⁡θ-7(sin^2⁡θ+cos^2⁡θ )=0
    →30 cos^2⁡θ-42 sin⁡θ cos⁡θ+5 sin⁡θ cos⁡θ-7 sin^2⁡θ=0
    →5 cos⁡θ (6 cos⁡θ+sin⁡θ )-7 sin⁡θ (6 cos⁡θ+sin⁡θ )=0
    →(6 cos⁡θ+sin⁡θ )(5 cos⁡θ-7 sin⁡θ )=0
    Case 1: 6 cos⁡θ+sin⁡θ=0
    →tan⁡θ=-6
    →θ=arctan⁡(-6)
    →x=±√74 cos⁡(arctan⁡(-6) )
    →x=±√2
    When x=-√2:
    →(-√2)^2+y√2=14
    →y√2=12
    →y=6√2
    When x=√2:
    →(√2)^2-y√2=14
    →y√2=-12
    →y=-6√2
    →{x,y}={-√2,6√2},{√2,-6√2}
    Case 2: 5 cos⁡θ-7 sin⁡θ=0
    →7 sin⁡θ=5 cos⁡θ
    →tan⁡θ=5/7
    →θ=arctan⁡(5/7)
    →x=±√74 cos⁡(arctan⁡(5/7) )
    →x=±7
    When x=-7:
    (-7)^2+7y=14
    →7y=-35
    →y=-5
    When x=7:
    (7)^2-7y=14
    →7y=35
    →y=5
    →{x,y}={-7,-5},{5,7}

  • @scottleung9587
    @scottleung9587 Рік тому

    Nice!

  • @jamesharmon4994
    @jamesharmon4994 Рік тому

    I thought of yet another method which I did not pursue.
    Set the two equations equal to each other...
    x^2 - xy = y^2 + xy - 46. (since 14 = 60 - 46)

  • @maxm9960
    @maxm9960 Рік тому +2

    method 4:
    multiply both equations
    > xy(x-y)(x+y) = 840
    > xy(x^2-y^2) = 840 -- (1)
    add both equations:
    > x^2-y^2 -2xy = -46
    > x^2-y^2 = 2xy - 46 -- (2)
    substitute (2) into (1)
    xy ( 2xy - 46 ) = 840
    let m=xy
    > m(2m-46)=840 -> m^2 - 23m -420 = 0
    > (m+12)(m-35) = 0
    > m = -12 or m = 35
    when m=-12, x^2 = 2 and y^2 = 72
    when m=35, x^2 = 49 and y^2 = 25
    with validation, it's easy to come to the 4 sets of answers :)

  • @MATHUP869
    @MATHUP869 Рік тому

    Thank you so much for your shareing.... Master

  • @jarikosonen4079
    @jarikosonen4079 Рік тому

    7:00, which one? But at 7:33 its squared, so the sign would not matter this case.

  • @NadiehFan
    @NadiehFan Рік тому

    I wonder why you didn't consider the following approach. Rewrite the equations as
    x² = 14 + xy
    y² = 60 − xy
    Multiplying both equations this gives
    x²y² = (14 + xy)(60 − xy)
    Now let
    xy = z
    and we have
    z² = (14 + z)(60 − z)
    z² = 840 + 46z − z²
    2z² − 46z − 840 = 0
    z² − 23z − 420 = 0
    (z − 35)(z + 12) = 0
    z = 35 ⋁ z = −12
    So we have xy = 35, which gives the solutions (x, y) = (7, 5) and (x, y) = (−7, −5) or xy = −12 which gives the solutions (x, y) = (√2, −6√2) and (x, y) = (−√2, 6√2).

  • @christopherellis2663
    @christopherellis2663 Рік тому

    X²+y²=14+60.=74=25+49.
    {x, y}=(5, 7)

  • @captainteach007
    @captainteach007 Рік тому +2

    Please explain your comment: this is a homogenous system, therefore y = ux

    • @chaosredefined3834
      @chaosredefined3834 Рік тому +2

      If you take each term on the left hand side of each of the equations, the sums of the powers of x and y are constant. In this case, they are always 2. For example, x^2 is x^2 y^0, 2 + 0 = 2. xy = x^1 y^1, 1 + 1 = 2.
      When that happens, you get surprisingly good results by putting in y = ux.