Can you find area of the Yellow Semicircle? | (Perpendiculars) |

Поділитися
Вставка
  • Опубліковано 10 лют 2025
  • Learn how to find the value of the Yellow Semicircle. Important Geometry and Algebra skills are also explained: area of the circle formula; Pythagorean theorem. Step-by-step tutorial by PreMath.com.
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find area of t...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find area of the Yellow Semicircle? | (Perpendiculars) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindSemiCircleArea #SemiCircle #PythagoreanTheorem #IntersectingChordsTheorem #GeometryMath #Euclid'sTheorem #EuclideanTheorem
    #MathOlympiad #RightTriangle #RightTriangles #ThalesTheorem
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    Andy Math
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

КОМЕНТАРІ • 37

  • @crosstraffic187
    @crosstraffic187 22 години тому +3

    I really enjoy your math challenges. Thank you.

    • @PreMath
      @PreMath  21 годину тому

      Glad to hear that!
      You are very welcome!😀
      Thanks for watching❤🙏

  • @jtechnicalgaming7831
    @jtechnicalgaming7831 Годину тому +1

    Great question sir
    I solved it 😊😊😊

  • @AzouzNacir
    @AzouzNacir 23 години тому +4

    Suppose AD=a and FB=b in the right triangles ABC and ABE we have AD*BD=CD² and AF*BF=FE² and from this a*(b+3)=1 and (a+3)*b=4 by solving these two equations we get a=√5-2,b=√5-1 and from this 2R=a+b+3=2√5 so R=√5 and from this the area of the shaded region is equal to π*√5²/2=5π/2

  • @yakovspivak962
    @yakovspivak962 14 годин тому +1

    4 + Х^2 = 1 + (3 - Х)^2
    Х = 1, R = 5^.5
    S = 2.5 Pi

  • @marioalb9726
    @marioalb9726 12 годин тому +1

    Everytime we have this ratio: 3/(2+1) = 1, then the right triangles that are formed, are congruents, then angle COE=90°
    Similarity of triangles:
    2/R=x/R --> x=2 cm
    1/R=y/R --> y= 1cm
    R²= x²+1² = 2²+y² = 5 cm²
    A = ½πR² = 2,5π cm² ( Solved √ )

  • @marioalb9726
    @marioalb9726 13 годин тому +1

    Pytagorean theorem, twice
    R² = (3-x)²+1²=x²+2²
    (3²-6x+x²)+1²=x²+2²
    6x = 3²+1²-2²= 6 --> x=1
    R = x²+2² = 5
    A = ½πR² = 2,5π cm² ( Solved √ )

  • @jamestalbott4499
    @jamestalbott4499 14 годин тому

    Thank you!

  • @giuseppemalaguti435
    @giuseppemalaguti435 23 години тому +1

    a+b=3...r^2=1+a^2=4+b^2...(a+b)(a-b)=3....a-b=1...2a=4..a=2...r^2=5...Ayellow=πr^2/2=5π/2

  • @marioalb9726
    @marioalb9726 20 годин тому +3

    Intersecting chords theorem, twice:
    b.(3+a)=3b+ab = 2²
    a.(3+b)=3a+ab = 1²
    Subtracting:
    3b-3a= 4-1=3
    b-a=1 ; b+a=1+2a
    2R= 3+a+b =3+(1+2a)= 4+2a
    R = 2+a= x+a --> x=2cm
    Pytagorean theorem:
    R²= 1²+x² =1²+2²= 5
    A = ½πR² = 2,5π cm² (Solved √)

  • @ganitbhakt
    @ganitbhakt 20 годин тому

    Nice

  • @AmirgabYT2185
    @AmirgabYT2185 21 годину тому +1

    S=2,5π≈7,854≈7,85

  • @zawatsky
    @zawatsky 23 години тому +1

    Попробуем в систему: 1+x²=4+y²; x+y=3. x²-y²=3=(x+y)(x-y)=3(x-y), откуда x-y=1. Если пропорции на чертеже верные, из этой упрощённой системы х=2, у=1. Т. е. имеем равные треугольники с гипотенузами √5=r. Тогда искомая площадь полукруга S=5π/2=2½π.

  • @gagik9401
    @gagik9401 23 години тому

    Very easy

  • @alexundre8745
    @alexundre8745 23 години тому

    Bom dia Mestre
    Obrigado pelos ensinamentos

  • @AnkitKumar-sy7pg
    @AnkitKumar-sy7pg 23 години тому

    Thanks sir for such questions 😊😊

  • @marioalb9726
    @marioalb9726 20 годин тому +1

    Circular ring area, method:
    A₁=½(¼π2²)= ½π cm²= ½π(R²-x²)
    R²= 1+x²
    A₂=½(¼π4²)=2π cm²= ½π(R²-(3-x)²)
    R²= 4+(3-x)²
    Equalling:
    1+x² = 4+(3²-6x+x²)
    6x = 4-1+9= 12 --> x=2 cm
    R² = 1+x² = 5
    A = ½πR² = 2,5π (Solved √)

  • @michaelgarrow3239
    @michaelgarrow3239 20 годин тому

    I use 1983 era Big Mack’s for “units” and it works out perfectly.

  • @AndreyDanilkin
    @AndreyDanilkin 4 години тому

    CC`||AB, and C` in line EF. EC`= 1. 1*3=x*3 -> x=1 - > In circle rectangle 2x4, find diagonal 2^2+4^2=2sqrt(5) -> R=sqrt(5)

  • @santiagoarosam430
    @santiagoarosam430 22 години тому

    La paralela a AB por C corta a EF en M y a la circunferencia en G ---> Potencia de M respecto a la circunferencia =1*3=3*MG---> MG=1---> (2r)²=(2*CD)²+(CG)² =2²+4²---> r²=5---> Área del semicírculo =5π/2 Ud².
    Gracias y un saludo cordial.

  • @scottdort7197
    @scottdort7197 7 годин тому

    I did it a slightly different way. Not as good as Premath's but it got the job done. 2r = x + y + 3. 1^2 = x (y+3) and 2^2 = y (x+3). If you expand those last 2 equations and subtract, you get y = x +1. If you substitute that into 1 = xy + 3x you get 1 = x(x+1) + 3x. That simplifies to x^2 + 4x -1 = 0. If you use the quadratic equation that yields x = -2 + sqrt5. From the 1st equation 2r = x + y + 3 you substitute in y = x +1 which yields r = x +2. If you substitute x = -2 + sqrt5 into r = x + 2 you get r = sqrt5. Then of course the area of a semicircle will be A = 1/2* sqrt5 * pi = 5/2*pi which is approximately 7.8540 square units.

  • @joeschmo622
    @joeschmo622 8 годин тому

    Draw the 2 radii, pythag the 2 triangles, r=r (hypotenuses), equate. x=2, re-pythag either triangle to find r=√5.
    A=2.5pi

  • @Badmintonforall
    @Badmintonforall 20 годин тому

    Thank you for posting easy questions for neophyts !
    OF = y
    DO = x
    CO = r (radius)
    (3-y)² + 1² = r²
    y² - 6y + 10 = r²
    (3-x)² + 2² = r²
    x² - 6x +13 = r²
    x + y = 3
    x = 3 -y
    y = 3 -x
    (3 -x)² - 6(3 -x) + 10 = x² - 6x +13
    9 - 6x + x² - 18 + 6x + 10 = x² - 6x +13
    6x = 12
    x = 2
    r² = 2² + 1² = 5
    semicircle = (1/2)πr² = 5/2π

  • @himo3485
    @himo3485 6 годин тому

    CO=OE=r OF=x DO=3-x
    x²+2²=r² (3-x)²+1²=r²
    x²+4=10-6x+x² 6x=6 x=1 r²=5
    Semicircle area = r²π/2 = 5π/2

  • @marcgriselhubert3915
    @marcgriselhubert3915 23 години тому

    Be a = OD, then OF = 3 -a; and be R the radius of the circle. In triangle ODC we have OC^2 = OD^2+DC^2, so R^2 = a^2 + 1
    In triangle OFE we have OE^2 = OF^2 + FE^2, so R^2 = (3 -a)^2 + 4. From these two previous equations we get that a^2 + 1 = (a -3)^2 + 4
    We develop: a^2 + 1 = a^2 -6.a + 9 + 4, we simplify and get that 6.a = 9 +4 -1 = 12, and so a = 2
    Now in triangle ODC: R^2 = a^2 + 1 = 2^2 + 1 = 5. The area of the semi-circle is ((Pi.(R^2))/2, so it is (5/2).Pi
    (I see that I did it just like you did...!)

  • @nenetstree914
    @nenetstree914 23 години тому +1

    2.5pi

  • @cyruschang1904
    @cyruschang1904 15 годин тому

    √(r^2 - 1^2) + √(r^2 - 2^2) = 3
    √(r^2 - 4) = 3 - √(r^2 - 1)
    (r^2 - 4) = 9 + (r^2 - 1) - 6√(r^2 - 1)
    √(r^2 - 1) = 2
    r^2 = 5
    Semicircle area = 5π/2

  • @devondevon4366
    @devondevon4366 9 годин тому

    7.854 or 5/2 pi
    Let the radius = r
    draw two triangles with base in n and 3-n (3-n + n =3)
    then r^2 = 2^2 + n^2
    and r^2 = 1^2 + (3-n)^2
    Hence, 2^2 + n^2 = 1 + 9 + n^2 - 6n
    4- 10 = -6n
    -6 = -6n
    n= 1
    Hence r^2 = 4 + 1
    = 5
    r= sqrt 5
    area of circle = pi sqrt 5* sqrt 5 = 5pi
    area of semi-circle = 5pi/2 Answer or 7.854

  • @鈞齊
    @鈞齊 19 годин тому

    r=abc/(4S)
    r²π/2=(abc)²π/(2•16S²)
    =(16•18•10)π/(2•16•6²)
    =5π/2

  • @AnkitKumar-sy7pg
    @AnkitKumar-sy7pg 23 години тому

    Sir you are in which country please reply me.

  • @sergioaiex3966
    @sergioaiex3966 22 години тому

    Solution:
    Applying Pythagorean Theorem in ∆CDO
    CD = 1
    DO = a
    CO = r
    CD² + DO² = CO²
    (1)² + (a)² = r²
    r² = a² + 1 ... ¹
    Applying, once again, Pythagorean Theorem in ∆EFO
    EF = 2
    FO = 3 - a
    EO = r
    EF² + FO² = EO²
    (2)² + (3 - a)² = r²
    4 + 9 - 6a + a² = r²
    r² = a² - 6a + 13 ... ²
    Equaling Equation ¹ and Equation ², it will be:
    a² + 1 = a² - 6a + 13
    1 = - 6a + 13
    6a = 12
    a = 2
    Substituting in Equation ¹
    r² = (2)² + 1
    r² = 5
    r = √5
    Semicircle Area = ½ π r²
    Semicircle Area = ½ π (√5)²
    Semicircle Area = 5π/2 square units
    Thus:
    Semicircle Area = 5π/2 square units ✅
    Semicircle Area ≈ 7.8539 square units ✅

  • @AnkitKumar-sy7pg
    @AnkitKumar-sy7pg 23 години тому

    Area is 2.5 pi

  • @rey-dq3nx
    @rey-dq3nx 23 години тому

    r²=1+(3-x)²
    r²=4+x²
    4=1+9-6x
    6x=6
    x=1
    r=√5
    Area=(1/2)5π

  • @alexniklas8777
    @alexniklas8777 22 години тому

    S= 2,5π

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 23 години тому

    5π÷2

  • @unknownidentity2846
    @unknownidentity2846 22 години тому

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The triangles OCD and OEF are right triangles, so we can apply the Pythagorean theorem. With r being the radius of the semicircle we obtain:
    r² = OC² = OD² + CD²
    r² = OE² = OF² + EF²
    OD² + CD² = OF² + EF²
    OD² + CD² = (DF − OD)² + EF²
    OD² + 1² = (3 − OD)² + 2²
    OD² + 1 = 9 − 6*OD + OD² + 4
    6*OD = 12
    ⇒ OD = 12/6 = 2
    ⇒ OF = DF − OD = 3 − 2 = 1
    r² = OD² + CD² = 2² + 1² = 4 + 1 = 5
    r² = OF² + EF² = 1² + 2² = 1 + 4 = 5 ✅
    Now we are able to calculate the area of the yellow semicircle:
    A = πr²/2 = 5π/2

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 17 годин тому

    MY RESOLUTION PROPOSAL :
    01) OA = OC = OE = OB = R
    02) OD + OF = DF = 3
    03) OD = X
    04) OF = (3 - X)
    05) R^2 = X^2 + 1
    06) R^2 = (3 - X)^2 + 4
    07) X^2 + 1 = (3 - X)^2 + 4
    08) X^2 + 1 = 9 - 6X + X^2 + 4
    09) 6X = 9 + 4 - 1
    10) 6X = 12
    11) X = 2
    12) OD = 2 and OF = 1
    13) R^2 = 1 + 4
    14) R^2 = 5
    15) R = sqrt(5)
    16) Semicircle Area = 5Pi/2
    Therefore,
    MY BEST ANSWER IS :
    Semicircle Area equal to 5Pi/2 Square Units or approx. equal to 7,854 Square Units.