Can you calculate the value of X? | (Isosceles Trapezoid) |

Поділитися
Вставка
  • Опубліковано 8 лют 2025
  • Learn how to find the value of X. Important Geometry and Algebra skills are also explained: Isosceles Trapezoid; Isosceles Trapezium; Thales' theorem; Pythagorean Theorem; similar triangles. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you calculate the ...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you calculate the value of X? | (Isosceles Trapezoid) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindX #IsoscelesTrapezoid #SemiCircle #GeometryMath #PythagoreanTheorem #ThalesTheorem #SimilarTriangles
    #MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    Andy Math
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

КОМЕНТАРІ •

  • @mcdowelltw
    @mcdowelltw 4 дні тому +6

    One of my degrees is in Math. If I had teachers as excellent as you have proven to be, I would have done better. I loved the way you not only went step by step, you also applied theorems, rules and observations before moving on. You made learning easier, thank you.

    • @PreMath
      @PreMath  4 дні тому

      That’s so kind of you to say, I’m glad you found it helpful!
      You are very welcome!😀
      Thanks for the feedback ❤️🙏

  • @abstragic4216
    @abstragic4216 5 днів тому +13

    I didn't need Pythagorus, because there is no need to know the length of BC or of CE. Triangles ABC and ACE are similar, so AC/AB=3/9=AE/AC which means AE = AC/3 = 1.

    • @scottdort7197
      @scottdort7197 5 днів тому +1

      I totally agree. Pythagorus is kind of an unnecessary step. One third of 9 is 3. One third of three is one. 1 x 2 = 2. 9 - 2 = 7. Done.

    • @PreMath
      @PreMath  5 днів тому +1

      Thanks for the feedback ❤️🙏

    • @ASINGH-li8eq
      @ASINGH-li8eq 5 днів тому

      excellant very quick ​@@scottdort7197

    • @calvinmasters6159
      @calvinmasters6159 4 дні тому +3

      I hate to be pedantic, but there's no "u" in Pythagoras.

    • @carlinoiavarone8342
      @carlinoiavarone8342 4 дні тому +3

      Ce where is the letter E?

  • @AzouzNacir
    @AzouzNacir 5 днів тому +8

    Let H be the perpendicular projection of point C on line AB. We have AH=(9-x)/2. In right triangle ABC, let AH*AB=AC². From this, ((9-x)/2)*9=9. Therefore, x=7.

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @Claudio_Bruzzone
    @Claudio_Bruzzone 5 днів тому +8

    You can use Ptolemy's Theorem and everything becomes very simple:
    AD*BC = AC*BD+AB*CD
    Being AD*BC = AD² = AB²-DB², we have
    9²-3² = 3*3 + 9*x;
    72 = 9 + 9x;
    63 = 9x
    x = 7

    • @PreMath
      @PreMath  5 днів тому +1

      Excellent!
      Thanks for sharing ❤️🙏

    • @calvinmasters6159
      @calvinmasters6159 4 дні тому +1

      Smart guy, Ptolemy.
      Too bad that he taught a geocentric solar system.

    • @Claudio_Bruzzone
      @Claudio_Bruzzone 4 дні тому +1

      @@calvinmasters6159 You are partially right.
      If you want to describe the motions of celestial bodies as seen from the Earth's surface, it is more convenient to reason like Ptolemy rather than Copernicus!

    • @calvinmasters6159
      @calvinmasters6159 4 дні тому +1

      @@Claudio_Bruzzone Haha, you have a point. We still say that the sun rises and sets.
      Even so, I'm not letting him off the hook that easy. He published meticulous diagrams that stood for over a thousand years as textbook science til Copernicus.

  • @zupitoxyt
    @zupitoxyt 5 днів тому +2

    Epic as always

    • @PreMath
      @PreMath  5 днів тому

      Glad to hear that!
      Thanks for the feedback ❤️🙏

  • @marioalb9726
    @marioalb9726 4 дні тому +3

    sinα= ½c/R= (½3)/(½9)= 1/3
    α = 19,4712° ; 2α= 38,9424°
    x = 2 (R cos2α) = 2*½9*cos2α
    x = 7 cm ( Solved √ )

    • @ASINGH-li8eq
      @ASINGH-li8eq 4 дні тому +1

      Good brain , high level calculation .

  • @jimlocke9320
    @jimlocke9320 5 днів тому +2

    Extend AC up by length 3. Label the end point E, so CE = 3. Construct BC and BE. Note that ΔACB and ΔECB are congruent by side - angle - side. Therefore, BE = AB = 9. Let the point of intersection of BE with the half circle be F. Note that ∠ABC and ∠CBE are equal because ΔACB and ΔECB are congruent. Construct CF. ∠CBF = ∠CBE = ∠ABC . Because inscribed angles ∠CBF and ∠ABC have the same measure, the arcs they subtend, AC and CF, are congruent. The chords that subtend those arcs must be equal, so length CF = AC = 3. Arc BF has the same measure as arc CD, so the chords CD and BF have the same length, x. BE is a secant with length 9 and external segment EF = BE - BF = 9 - x. AE is a secant with length AC + CE = 3 + 3 = 6 and external segment CE = 3. Apply the secant - secant theorem: (CE)(AE) = (EF)(BF), (3)(6) = (9 - x)(9), 18 = 81 - 9x, 9x = 63 and x = 7, as PreMath also found.

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @jamestalbott4499
    @jamestalbott4499 5 днів тому +1

    Thank you!

    • @PreMath
      @PreMath  5 днів тому

      Thanks for watching! 🙏

  • @alexniklas8777
    @alexniklas8777 5 днів тому +1

    Decided like you.
    Thanks sir!

    • @PreMath
      @PreMath  5 днів тому

      Glad I could help! 😊
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @AndreyDanilkin
    @AndreyDanilkin 5 днів тому +1

    triangle OAC-4.5, 3, 4.5 ~ triangle ACA` - 3, y, 3 -> 3/4.5 = y/3 -> y=2 ; x=9-y=7

    • @PreMath
      @PreMath  5 днів тому

      Thanks for sharing ❤️🙏

  • @marioalb9726
    @marioalb9726 4 дні тому +1

    Similarity of right triangles:
    a/3 = 3/9 --> a = 1 cm
    x = 9 - 2a = 7 cm (Solved √)

  • @marioalb9726
    @marioalb9726 4 дні тому +1

    Ptolemy's theorem for inscribed quadrilateral:
    d² = 9x + c²
    Pytagorean theorem:
    d² = (2R)² - c²
    Equalling:
    9x + c² = (2R)² - c²
    9x= (2R)²- 2c²= 9²- 2*3² = 63
    x = 7 cm ( Solved √)

  • @cyruschang1904
    @cyruschang1904 5 днів тому +2

    √{3^2 - [(9/2)^2 - (x/2)^2]} + x/2 = 9/2
    9 - 81/4 + (x^2)/4 = 81/4 - 9x/2 + (x^2)/4
    9x/2 = 81/2 - 9
    x/2 = 9/2 - 1 = 7/2
    x = 7

    • @PreMath
      @PreMath  5 днів тому +1

      Excellent!
      Thanks for sharing ❤️🙏

    • @cyruschang1904
      @cyruschang1904 5 днів тому

      @ Thank you 😊

  • @santiagoarosam430
    @santiagoarosam430 5 днів тому +1

    Altura del trapezoide =h : Radio del semicírculo =r=9/2 ---> AD=√(9²-3²)=6√2 ---> Área ABD=3*6√2/2 = 9h/2---> h=2√2 ---> (x/2)²=(r+h)*(r-h) ---> x=7.
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @georgebliss964
    @georgebliss964 5 днів тому +2

    Joining O to C.
    OC = 4.5, AO = 4.5.
    Triangle AOC cosine formula.
    3^2 = 4.5^2 + 4.5^2 - 2 * 4.5 * 4.5 * cos AOC.
    9 = 40.5 - 40.5 cos AOC.
    Cos AOC = 31.5 / 40.5.
    Raise perpendicular from point O to ctr. of CD at point P.
    Then angle OCP = angle AOC.
    Therefore cos OCP = 31.5 /40.5.
    Cos OCP = (x / 2) / 4.5.
    31.5 / 40.5 = x / 9.
    x = 31.5 / 40.5 * 9.
    x = 7.

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

    • @geroldheggem6522
      @geroldheggem6522 4 дні тому

      I did the same, but over complicated it by:
      180-(AOC+BOD)=102
      X=40.5-40.5*cos102=7

    • @geroldheggem6522
      @geroldheggem6522 4 дні тому

      I did the same, but over complicated it by:
      180-(AOC+BOD)=102
      X=40.5-40.5*cos102=7

  • @unknownidentity2846
    @unknownidentity2846 5 днів тому +2

    Let's find x:
    .
    ..
    ...
    ....
    .....
    Let M be the midpoint of CD. Since OCD is an isosceles triangle, the two triangles OCM and ODM are congruent right triangles and we can apply the Pythagorean theorem. With r being the radius of the semicircle we obtain:
    OC² = OM² + CM² = OM² + (CD/2)² = OM² + (x/2)² = OM² + x²/4 ⇒ OM² = OC² − x²/4 = r² − x²/4
    Now let's add point E on AB such that OECM is a rectangle. In this case ACE is a right triangle and we can apply the Pythagorean theorem again:
    AC² = AE² + CE² = AE² + OM² = (OA − OE)² + OM² = (OA − CM)² + OM² = (r − x/2)² + OM² = r² − rx + x²/4 + OM²
    ⇒ OM² = AC² − (r² − rx + x²/4) = 3² − r² + rx − x²/4 = 9 − r² + rx − x²/4
    Now we are able to calculate the value of x:
    OM² = r² − x²/4 = 9 − r² + rx − x²/4
    2r² − 9 = rx
    ⇒ x = (2r² − 9)/r = [2(AB/2)² − 9]/(AB/2) = (2*AB²/4 − 9)/(AB/2) = (AB² − 2*9)/AB = (9² − 18)/9 = (81 − 18)/9 = 63/9 = 7
    Best regards from Germany

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @sakurayayoi-p2r
    @sakurayayoi-p2r 5 днів тому +1

    別解法 oE=x/2。三角形AOEで三平方の定理を使い、(X/2)二乗+hh=9*9 1式。三角形CAOで(9-X/2)二乗+hh=3*3 2式。1式-2式より、9x=6*12。X=8ともとまる。

    • @PreMath
      @PreMath  5 днів тому

      Thanks for the feedback ❤️🙏

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 днів тому +1

    We use an orthonormal center O and first axis (OB). We name t =angleBOD. Then D((9/2).cos(t); (9/2).sin(t)) and B((9/2); 0)
    VectorBD((9/2).(cos(t) -1): (9/2).sin(t) and BD^2 = (81/4).[(cos(t)^2 -2.cos(t) +1 +(sin(t)^2] = (81/4). [2 - 2.cos(t)] = (81/4).[4.(sin(t/2)^2]
    Then BD = (9/2).(2.sin(t/2)) = 9.sin(t/2). As we know that BD = 3, we then have sin(t/2) = 1/3 and then cos(t) = 1 - 2.(sin(t/2))^2 = 1 - (2/9) = 7/9
    The absissa of D is (9/2).cos(t) = (9/2).(7/9) = 7/2, and x is twice this value, so x = 7

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @lwels49
    @lwels49 4 дні тому

    ABCD is a cyclic quadrilateral.
    Used product of diagonals equals sum of products of opposite sides.
    In this example the diagonals are congruent.
    Substituting gives 9 squared minus 3 squared equals 9 times x plus 9.
    Get x =7

  • @angeluomo
    @angeluomo 4 дні тому

    A trig solution. Connect CO and DO. The angles AOC and BOD equal 2*arcsin(1.5/4.5)=38.9424. Angle COD = 180-(2*38.9424) = 102.1151. Hence, x= 2*4.5*sin(102.1151/2)=7

  • @robertlynch7520
    @robertlynch7520 5 днів тому

    I've said it before ... and I'm not sure why its always forgotten, but here it is again: for right triangles, the line H is always
    H = AB/C where C is hypotenuse
    As simple as that looks, it always holds true, and is even fairly easy to prove. Moreover, the part of C on the A side is AA/C and the part of C on the B side is BB/C. Always.
    So using Thale's theorem, A = 3, B = sqrt(9^2 - 3^2) = sqrt(72), and C = 9, the given.
    X will be C (9) minus two of the "parts of C on the A side", or
    X = 9 - (2AA/C) = 9 - (2 * 3 * 3 / 9) = 9 - 18/9 = 9 - 2 = 7
    And that's that. Just remember those 3 identities for right triangles and their height
    H = AB/C, (A bit of C) = AA/C, and (B bit of C) = BB/C
    I didn't use the square symbol because by not using it, the trio is much easier to visually remember.
    GoatGuy

  • @AmirgabYT2185
    @AmirgabYT2185 5 днів тому +2

    x=7

    • @PreMath
      @PreMath  5 днів тому +1

      Excellent!
      Thanks for sharing ❤️🙏

  • @alexundre8745
    @alexundre8745 5 днів тому +1

    Bom dia Mestre

    • @PreMath
      @PreMath  5 днів тому

      Hello dear😀
      Thanks ❤️🙏

  • @quigonkenny
    @quigonkenny 5 днів тому +1

    Draw AD. By Thales' Theorem, as A and B are ends of a diameter and D is a point on the circumference, then ∠BDA = 90°. We can use Pythagoras to find the length of AD, but frankly it's unnecessary. All we need to know is that ∆BDA is a right triangle.
    Drop a perpendicular from D to E on AB. If ∠DAB = α and ∠ABD = 90°-α = β, then as ∠DEB = 90°, then ∠BDE = 90°-β = α. ∆BDA and ∆DEB are thus similar by AAA.
    AB/BD = BD/EB
    9/3 = 3/EB
    9EB = 9
    EB = 1
    Drop another perpendicular from C to F on AB. As FE and BC are parallel, and as DE and CF are both perpendicular to FE and BC and thus parallel to each other, and as ∠FED = ∠EDC = ∠DCF = ∠CFE = 90°, then FEDC is a rectangle, CF = DE and FE = DC = x.
    As BD = CA, DE = EF, and ∠CAF = ∠EBD, then ∆DEB and ∆AFC are congruent. AF = EB = 1.
    AB = AF + FE + EB
    9 = 1 + x + 1 = x + 2
    [ x = 9 - 2 = 7 units ]

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @RK-tf8pq
    @RK-tf8pq 5 днів тому

    Another way to do is, since CE is perpendicular to AB, we can say that CE**2 = y * (9-y) or 9y-y**2. And CE**2 is also equal to 9 - y**2 (from the right angle triangle ACE). Thus 9y - y**2 = 9 -y**2. So 9y = 9. And thus y = 1

  • @murdock5537
    @murdock5537 2 дні тому

    φ = 30° → sin⁡(φ) = 1; ∆ ABC → ABC = δ; sin⁡(BCA) = 1; AC = BD = 3; CD = x = ?
    AB = 9 = AE + EO + BO = 2r; sin⁡(AEC) = 1; CE = h
    AB = 9 → BC = 6√2 → h = 3(6√2)/9 = 2√2; sin⁡(δ) = 1/3 = AE/3 → AE = 1 → x = 9 - 2 = 7

  • @ald6980
    @ald6980 2 дні тому

    Ptolemy's theorem for such a simple problem is an overkill.
    1. Find the diagonal using the Pythagorean theorem, l = sqrt (9 ^ 2 - 3 ^ 2) = sqrt (72).
    2. Find the height of the trapezoid from the right triangle. 3 * sqrt (72) = 9h -->
    h = sqrt (8).
    3. Extend the height to the intersection with the circle - we get a right triangle with sides
    2h, x , 9.
    4. Using the Pythagorean theorem, x ^ 2 + 4h ^ 2 = 81 --> x = 7.

  • @calvinmasters6159
    @calvinmasters6159 4 дні тому

    Ah, very good. I didn't know Thale's Theorem.
    I dropped a vertical from C and then used Law of cosines to find A.
    Same result.

  • @AaravAgrawal-777
    @AaravAgrawal-777 4 дні тому

    I used ptolemy's theorem for this
    [Sum of 1st opposite sides]×[Sum of other two opposite sides]=[Multiplication of diagnols]

  • @Ahmedvadawin
    @Ahmedvadawin 4 дні тому

    Another way to go about it a*2=b*2+c*2-2xbxc cos theta. Therefore, 3*2=4.5*2+4.5*2-2x4.5x4.5xcos theta. This implies that theta= 39 degrees. Then 180-(2x39)=102 degree. Now that we know the angles we can use heron's formulas to calculate the area of triangle ODB. So S=(4.5+4.5+3)/2=6. Now Area of Triangle ODB=sqt(6(6-4.5)x(6-4.5)x(6-3)=1/2x4.5xh. From there we know that the Height =2.83. This will be the same Heights for triangle COD. Therefore 1/2x(2.83)=4.5x4.5xsin102. THUS x will equal 6.99 which is 7

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 днів тому +1

    Another method:
    When we have CB = 6.sqrt(2) just as you did (with the Pytagorean theorem in triangle ACB, as you did), we also have AD = 6.sqrt(2) by symetry.
    Now we use the Ptolemy theorem in ABCD which is inscripted in a circle: AC.BD + AB.CD = BC.AD, so 3.3 + 9.x = (6.sqrt(2)).(6.sqrt(2)),
    so 9 + 9.x = 72 and then 9x = 33 and x = 7

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @zdrastvutye
    @zdrastvutye 5 днів тому

    it is a system of 2 nonlinear equations:
    10 print "premath-can you calculate the value of x trapezoid feb2025":dim x(3),y(3)
    20 l1=9:l2=3:r=l1/2:la=l2:lb=r:lc=r:lh=(la^2-lb^2+lc^2)/2/lc
    30 h=sqr(la^2-lh^2):lx=2*(r-lh):print "x=";lx
    40 x(0)=0:y(0)=0:x(1)=l1:y(1)=0:x(2)=2*r-lh:y(2)=h:x(3)=lh:y(3)=h
    50 masx=1200/2/r:masy=850/r:if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @鈞齊
    @鈞齊 5 днів тому +1

    Suppose that P on AB such that CP//DB
    then we have CD=BP=AB-AP
    We know that AB=9
    Goal: Find AP
    Notice that ∆OAC~∆CAP(AA)
    then (9/2):3=3:AP => AP=2
    Thus CD=7

  • @himo3485
    @himo3485 4 дні тому

    CO=OD=9/2 y²+(x/2)²=(9/2)² y²+(9/2-x/2)²=3²
    81/4-x²/4=9-(81/4-9x/2+x²/4) 81/4-x²/4=9-81/4+9x/2-x²/4
    162/4-9=9x/2 63/2=9x/2 x=7

  • @jesuscarralero1949
    @jesuscarralero1949 5 днів тому

    Teorema de Ptolomeo. Producto de las diagonales igual a 9x+9

    • @PreMath
      @PreMath  5 днів тому

      Thanks for the feedback ❤️🙏

  • @brettgbarnes
    @brettgbarnes 3 дні тому

    CE² = AC² - AE²
    CE² = OC² - OE²
    AC² - AE² = OC² - OE²
    3² - [(9 - x)/2]² = (9/2)² - (x/2)²
    9 - (81 - 18x + x²)/4 = (81/4) - (x²/4)
    (36 - 81 + 18x - x²)/4 = (81 - x²)/4
    36 - 81 + 18x - x² = 81 - x²
    18x = 126
    x = 7

  • @michaelkouzmin281
    @michaelkouzmin281 5 днів тому

    Just another solution (with excess of trigonometry :)))) :
    1. CD = 6*sqrt(2) according to the Thales and Pythagorean theorems;
    2. Let a = alpha = angle CAB, then ABC = DCB = D90-a and CDB = D180-a, CBD = D180-(D90-a) -(D180-a) = 2a-D90;
    3. Let us apply cosine theorem to triangle ABC:
    CB^2 = AC^2 + AB^2 - 2*AB*BC*cos(a) => cos(a) = ( CB^2 - (AC^2 + AB^2))/( 2*AB*BC) = (72 - 9 -81)/(-54) = 1/3;
    4. Let us apply sine theorem to triangle CBD:
    CB/sin(CDB) = x/sin(CBD) ;
    x = CB*sin(CBD)/sin(CDB) =
    =6*sqrt(2) * sin(2a-D90)/sin(D180-a) =
    = 6*sqrt(2) *(sin(2a)*cos(D90)-cos(2a)*sin(D90))/sin(a)=
    = 6*sqrt(2)* (-cos(2a)/sin(a)) =
    = 6*sqrt(2)*(1-2*(cos(a))^2)/sqrt(1-(cos(a))^2) =
    =6*sqrt(2)*(1-2*(1/3)^2)/sqrt(1-(1/3)^2) =
    = 6*sqrt(2)*(1-2/9)/sqrt(1-1/9) =
    =6*sqrt(2)*(7/9)/sqrt(8/9) =
    = 7 linear units.

  • @nrc1514
    @nrc1514 4 дні тому

    7 , using basic similarity

  • @johnbrennan3372
    @johnbrennan3372 5 днів тому +1

    AE= (9-x)/2. AC=3 therefore CE= sqroot [ 9-( 9-x )/2)^2)]. Then using pythag. X=7.

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @tedn6855
    @tedn6855 4 дні тому

    I first found bc to be sqrt 72. Then calculated triangle area to be 3 times that by half which is equivalent to 9 by half by height that gave me a height of sqrt 8.then calculated half of x being radius squared which is 4.5 minus height squared and square rooting getting 3.5 then finally multiplying by 2 to get 7 for x.

  • @SaurabhYadav-hr9nk
    @SaurabhYadav-hr9nk 5 днів тому +1

    Please keep ❤

    • @PreMath
      @PreMath  5 днів тому +1

      Thanks dear❤️🙏

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm 3 дні тому

    2:00-8:00 ΔABC: AC²=AE•AB =>
    => AE=AC²/AB=3²/9=9/9=1 😁

  • @JoanRosSendra
    @JoanRosSendra День тому

    Trazando OD y DF, obtenemos dos triángulos rectángulos (OFD y BFD) que comparten el cateto (DF) al que llamaremos "h".
    Aplicamos Pitágoras en ambos triángulos:
    (9/2)²=(x/2)²+h²
    3²=[(9-x)/2]²+h²
    Despejando h² en ambas ecuaciones tenemos:
    h²=(81-x²)/4
    h²=(36-81+18x-x²)/4
    e Igualando los resultados:
    81-x²=36-81+18x-x²
    18x=81+81-36
    18x=126
    X=126/18
    X=7
    Saludos

  • @xaviersoenen4460
    @xaviersoenen4460 5 днів тому

    r=9/2, cos(

  • @McFribble-m2t
    @McFribble-m2t 5 днів тому

    let A be the center of a coordinate system (x-axis along AB)
    P(x,y) x^2 + y^2 =3^2 = 9
    p(x,y) is also on the circle- (x-4.5)^2+y^2=4,5^2
    x^2+2*4.5*x+4.5^2+y^2=4.5^2
    x^2+y^2-9x=0
    9-9x=0
    x=1 this x is not the questioned x
    so CD (the answer) = 9-(2*x)=7

  • @nenetstree914
    @nenetstree914 5 днів тому +1

    7

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @yakovspivak962
    @yakovspivak962 5 днів тому

    X = 9 - 2 × (3^2 / 9) = 7
    Yep, as simple as that !

  • @DB-lg5sq
    @DB-lg5sq День тому

    شكرا لكم على المجهودات
    يمكن استعمال
    ABC=a
    CBD=90-2a
    x^2 = CB^2 + CD^2-2CB CD cosCBD
    =7

  • @sergioaiex3966
    @sergioaiex3966 5 днів тому

    Solution:
    Since we are dealing with an isosceles trapezoid, let's label the lengths
    AE = a
    AO = r = 9/2
    CE = h
    Applying Pythagorean Theorem in ∆ ACE, it will be:
    AE² + CE² = AC²
    (a)² + (h)² = (3)²
    a² + h² = 9 ... ¹
    Once again, applying Pythagorean Theorem in ∆ CEO, it will be:
    EO = r - a = 9/2 - a
    EO² + CE² = CO²
    (9/2 - a)² + (h)² = (9/2)²
    81/4 - 9a + a² + h² = 81/4
    a² + h² - 9a = 0 ... ²
    Replacing Equation ¹ in Equation ², it will be:
    9 - 9a = 0
    9a = 9
    a = 1
    Replacing "a = 1" in Equation ¹, to calculate "h", it will be:
    (1)² + (h)² = (3)²
    1 + h² = 9
    h² = 8
    h = 2√2
    Finally, applying Pythagorean Theorem in ∆ CGO, such that "G" is CD midpoint, it will be:
    CG² + GO² = CO²
    (x/2)² + (2√2)² = (9/2)²
    x²/4 + 8 = 81/4 (×4)
    x² + 32 = 81
    x² = 49
    x = 7
    Thus x = 7 units ✅

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 5 днів тому +1

    MY RESOLUTION PROPOSAL :
    01) Drop a Vertical Line from D and find Point E between Point O and Point B. Line Segment BE = a lin un
    02) OA = OB = OB = OD = 9 / 2 = 4,5 lin un.
    03) AD^2 + BD^2 = AB^2
    04) AD^2 = AB^2 - BD^2
    05) AD^2 = 81 + 9
    06) AD^2 = 90
    07) AD = sqrt(90)
    08) Right Triangles (BDE) and (ABD) are Similar. We can use "The Principle of Proportionality".
    09) a / 3 = 3 / 9
    08) a = 9 / 9
    09) a = 1
    10) X = 9 - 2a
    11) X = 9 - 2
    12) X = 7
    MY BEST ANSWER :
    As far as my best knowledge, CD = X is equal to 7 Linear Units.

    • @PreMath
      @PreMath  5 днів тому +1

      Excellent!
      Thanks for sharing ❤️🙏

  • @texitaliano64
    @texitaliano64 День тому

    Per risolvere il problema considero un sistema di assi cartesiani passante per il centro del semicerchio O e traccio una circonferenza di raggio 3 con centro in B (9,0) poi determino la equazione delle due due circonferenze e le metto a sistema per trovare la distanza x che è la semibase minore del trapezio ABCD, quindi CD=2*x
    equazione della circonferenza generica dato centro (xc,yc) e raggio r
    (x-xc)^2+(y-yc)^2=r
    (xc,yc)=(0,0)
    metto a sistema le due circonferenze
    (x-0)^2+(y-0)^2=(9/2)^2
    (x-(9/2))^2+(y-0)^2=3^2
    x^2+y^2=81/4
    x^2+81/4-2*(9/2)*x+y^2=9
    y^2=(81/4)-x^2
    x^2+81/4-9*x+81/4-x^2-9=0
    81/4+81/4-9=9*x
    162/4-9=9*x
    (162/4-9)/9=x
    x=(81/2-9)/9
    CD=2*x
    CD=2*(81/2-9)/9
    CD=(81-18)/9
    CD=63/9
    CD=7

  • @LucasBritoBJJ
    @LucasBritoBJJ 5 днів тому

    Não precisa saber o valor de CB
    Da pra fazer por similaridade
    Tracando a linha perpendicular partindo de C até AB, temos o ponto É
    O triângulo ABC é congruente ao triângulo ACE, de forma que podemos achar a razão das hipotenusas e cateto menor
    3/9=AE/3
    AE = 1
    X = 7
    Dá para usar tbm h^2=mn e pitagoras no triângulo ACE para achar:
    m=AE
    n=EB
    h=CE
    h^2=m(9-m)
    h^2+m^2=3^2
    Comparando h^2, temos
    m(9-m)=9-m^2
    m=1

    • @PreMath
      @PreMath  5 днів тому

      Excellent!
      Thanks for sharing ❤️🙏

  • @JSSTyger
    @JSSTyger 3 дні тому

    7