Japanese Math Olympiad Challenge | A Very Nice Geometry Problem

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ • 22

  • @imetroangola17
    @imetroangola17 Місяць тому +2

    Solution:
    Note that ∠APB= 2θ. ∆ABP is rectangular, therefore:
    PB = 8/sin 2θ, on the other hand, in the rectangle ∆AQC, we have:
    QB = 5/cos θ. Thus, in the right triangle ∆BPQ:
    cos θ = QB/PB
    cos θ = 5/cos θ ÷ 8/sin 2θ
    cos θ = (5/cos θ) × (2sin θ cos θ/8)
    cos θ = 5 sin θ/4
    sin θ/cos θ = 4/5→ tg θ = 4/5.
    In the right triangle ∆BQC:
    tg θ = QC/BC → 4/5 = QC/5
    QC = 4 → DQ = 4.
    In the right triangle ∆PDQ, we have:
    tg θ = PD/DQ → 4/5 = PD/4
    PD = 16/5. Therefore,
    [PDQ] = PD × DQ/2 = 16/5 × 4/2
    *[PDQ] = 32/5 square units*

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب Місяць тому +2

    Suppose QC=x and PD=y, from which QD=8-x. Triangles BQC and PDQ are similar, from which 5/x=(8-x)/y, so 5y=8x-x². Line BC intersects line PQ at point S. Triangles PDQ and CQS are congruent, from which QC=QD, from which 8-x=x, so x=4, from which y=16/5, so the area of triangle PDQ is equal to ((16/5)*4)/2=32/5.

  • @mochemiguel1233
    @mochemiguel1233 27 днів тому

    Extend PQ, and BC and intersect in M point, and if you notice, BPQ and BMQ are congruents, CM = a (it'll be used later), and PDQ and QCM are congruents too, so DQ = QC = 4 (You got half of problem). Then, BM = BP = 5+a (a is CM), AP= 5-a and you can use PIT, (5+a)2 = (5-a)2 + (8)2 ==> a = 3.2. Then Area is 4 x 3.2 / 2 == 32/5

  • @zehradiyab3439
    @zehradiyab3439 Місяць тому +2

    I proof DC=4 in another way
    If we put PB is a diameter of circle which have two right inscribed angles,
    If we put O is the centre of the circle which passes through the points A,B,P andQ,
    So AO and BO are radii of the circle,
    so ABO is isosceles triangle.
    If we take the point E as a midpoint of AB,
    so OE is perpendicular to AB, and OE is parallel to BC ...1
    OB=OQ=r
    so angle OBQ=angle OQB ,
    so angle CBQ=angle OQB,
    so CQ is parallel toBC ...2
    From 1 and 2 EQ which passes through the point O is parallel to BC,
    so angle EQC=90° and EQ is perpendicular to DC,
    so AEQD is rectangle,
    and DQ=AE=½AB=½×8=4

  • @2012tulio
    @2012tulio 18 днів тому

    Let PD = x , DQ= y
    Tan theta= x/y ----eq1
    Tan theta= 8-y / 5 -----eq2
    Tan 2theta= 8/ 5-x -----eq3
    By solving these 3 equations together we get x = 3.2 and y = 4.2
    So the area of triangle PDQ is 0.5 * 3.2* 4.2 = 6.7

  • @marcgriselhubert3915
    @marcgriselhubert3915 Місяць тому +1

    Let's use an orthonormal center B, first axis (BA), second axis (BC), and let's note t = tan(theta). We have QC = BC.t = 5.t in triangle BCQ
    We also have AP = AB.tan(90° -2.theta) = 8.cotan(2.theta) = 8.(1/tan(2.theta)) = 8.((1 -t^2)/2.t) = (4 -4.t^2)/t = (4/t) - 4.t
    We have Q(5.t; 5), P(8; (4/t) -4.t), VectorBQ(5.t; 5), VectorQP(8 -5.t; (4/t) - 4.t -5)
    These vectors are orthogonal, so t(8 -5.t) + ((4/t) -4.t -5) = 0 or 5.(t^3) -4.(t^2) +5.t -4 = 0 or (t^2 + 1).(5.t - 4) = 0, which gives that t = 4/5.
    Then AP = 5 - 16/5 = 9/5 and DP = 5 - 9/5 = 16/5, and CQ = 4 and DQ = 8 - 4 = 4. The area of DQP is (1/2).DQ.DP = (1/2).4.(16/5) = 32/5.

  • @marioalb9726
    @marioalb9726 Місяць тому +1

    Angles θ only can be equals, if position of point Q, is equidistant in the segment DC. Only possibility !!! For other ratio 5/8, angles θ can't be equals.
    b = 8/2 = 4 cm
    h = 4*4/5= 16/5 cm
    A = ½b.h = ½*4*16/5
    A = 32/5 cm² ( Solved √ )

  • @oscarcastaneda5310
    @oscarcastaneda5310 Місяць тому +1

    I determined that tan(theta) = 4/5.
    From this , PD = 16/5 and DQ = 4.
    The Area calculates to 32/5.

  • @himo3485
    @himo3485 5 днів тому

    BEQ≅BCQ     BC=BE=5
    PEQ≅PDQ CQ=EQ=DQ=x x+x=8 2x=8 x=4     
    QDP∞BCQ 4/5 = PD/4 PD=16/5
    area of triangle DPQ = 4*16/5*1/2 = 32/5

  • @ludmilaivanova1603
    @ludmilaivanova1603 27 днів тому

    I found x=4 by just using similarrity of triangles BCQ, PDQ and BQP and also using DQ=x and QC= 8-x. No additional constructions.

  • @johnoehrle5973
    @johnoehrle5973 23 дні тому

    PQ=BQ*QC/5. DQ=PQ*5/BQ=QC=4. DP=4/5*4...

  • @giuseppemalaguti435
    @giuseppemalaguti435 Місяць тому +1

    Solita procedura trigonometrica...Ablue=differenza di 40-(somma dei 3 triangoli)=40-32(ctg2θ)^2-(25/2)tgθ-10(secθ)^2...con tgθ=4/5...Ablue=40-36/5-10-82/5=(200-36-50-82)/5=32/5...come sempre,credo ci saranno metodi piu veloci

  • @FFernandezB
    @FFernandezB 28 днів тому

    Three similar triangles, write three proportions and solve the equation

  • @michaeldoerr5810
    @michaeldoerr5810 Місяць тому +2

    Hello, I got the answer before you did. The area was 32/5 units square. And it looks like HL congruence has to be used to calculate x. And HL similarity is used to compute the other side. A pair of congruent triangles was required. I hope that this makes sense.

  • @befactfull525
    @befactfull525 Місяць тому +2

    aap ek teacher ho kya sir ya phir bhai tu koi intelligent math lover student hai

  • @wasimahmad-t6c
    @wasimahmad-t6c Місяць тому +1

    Area o bhi hosakta hai

  • @paololazzarin2215
    @paololazzarin2215 Місяць тому

    ...a cosa servono tali calcoli?

  • @nenetstree914
    @nenetstree914 Місяць тому +1

    32/5