The Gram-Schmidt process | Alternate coordinate systems (bases) | Linear Algebra | Khan Academy

Поділитися
Вставка
  • Опубліковано 6 січ 2025

КОМЕНТАРІ • 124

  • @baekalfen
    @baekalfen 11 років тому +127

    For me, 20 minutes of this is worth more than a 2 hour lecture. Thank you!

  • @asiasuarez6489
    @asiasuarez6489 9 років тому +130

    Khan Academy coming in clutch right before my Linear Algebra final #KhanAcademyIsBetterThanNYU

    • @HakaTech
      @HakaTech 8 років тому +24

      Asia Suarez??
      Interesting name. My name is Europe Patel

    • @frankeinstein719
      @frankeinstein719 7 років тому +14

      You were meant for each other. You need to have a child together and name it Antartica Koulibaly!!!

    • @metra-2020
      @metra-2020 6 років тому +5

      and thier grand kids must be barcelona and madrid

    • @muneeburrehman5956
      @muneeburrehman5956 6 років тому

      @@metra-2020 nah turkey would be better

  • @greensasque
    @greensasque 11 років тому +30

    Although my linear algebra instructor made this easy to follow in terms of the steps and calculations, watching this video I know actually understand WHAT we are doing when we perform these steps. Thank you Sal for the great video tutorial.

    • @lugia8888
      @lugia8888 Рік тому +1

      Read your book too. Sometimes videos aren’t necessary to fill the gaps the instructor doesn’t.

  • @knjiga4
    @knjiga4 10 років тому +7

    i've never understood this quite right at college but now as i take only this one 20 minute lecture at khanacademy i understand everything. thank you!!

  • @JT-hl6zd
    @JT-hl6zd 3 роки тому +9

    This felt so intuitive... my mind is blown. Thank you for showing us why math is so cool!

  • @lynny7868
    @lynny7868 2 роки тому +1

    1:28 How to ensure a basis is orthonormal.
    5:55 Replace v2 with the orthogonal projection of v2 onto v1 and the vector component of u orthogonal to v1.

  • @steveosazuwa2710
    @steveosazuwa2710 8 років тому +16

    Saving mathematic lives out here, thanks fam

  • @seonaxus
    @seonaxus 9 років тому +11

    A day before my optional resit of quantum mechanics and here Khan Academy is, saving the day again.

    • @raghavsharma2368
      @raghavsharma2368 9 років тому +1

      +Árón de Siún Here for my test of Mathematical Methods of Physics :p

  • @Space_Lion
    @Space_Lion 3 роки тому +1

    Man this guy's the best. Been using these vids since middle school, and I'm in grad school now. Thanks Khan Academy

  • @derek8482
    @derek8482 4 роки тому +3

    Thank you so much, i am so grateful to you Sal. You literally changed everything....

  • @theoldblood3804
    @theoldblood3804 10 років тому +7

    Hes definitely right when he said its not that bad when youre dealing with the numbers. Memorize the equations and its not too bad. Understanding the proof and why is the hard part.

  • @anweshadutta8782
    @anweshadutta8782 4 роки тому +3

    I don't have words to show how grateful I feel now

  • @akashraj5073
    @akashraj5073 6 років тому +2

    thank you khan academy ,it was really useful .i was struggling to understand hilbert space now you made it easy.

  • @gabrielv3654
    @gabrielv3654 8 років тому +67

    I am so confused.

  • @ellen128
    @ellen128 2 роки тому +1

    This is so well explained. I had to go back watch it twice though. But makes complete sense now. Thank you so much!!!!

  • @noneofurbusns3139
    @noneofurbusns3139 9 років тому +6

    That awkward moment when you understand something in maths :') Thanksss!!

  • @ruttananrongsawad2232
    @ruttananrongsawad2232 Рік тому

    It became clear later on in the video. thank you so much for making it free!

  • @InnoRative
    @InnoRative 10 років тому +19

    damn your U :p
    Tutorials are really nice, and that's really helping. Thank you :)

  • @nrrgrdn
    @nrrgrdn 3 роки тому +1

    minor correction @2:15 he should've written " || u_1 || " instead of just " u_1 "

  • @rishubits
    @rishubits 12 років тому +3

    great sir!! i love listening to your way of explaining things

  • @Iphone-bk2mk
    @Iphone-bk2mk 7 років тому +2

    You're truly great at teaching! Thanks and good luck!

  • @guitarist809
    @guitarist809 14 років тому +2

    Thanks kahn. You're really helpin me out with my math classes

  • @sundial_dream
    @sundial_dream Рік тому

    Thank u so much ! This video really helps me a lots !
    by the student from Tw

  • @lilymayburke8413
    @lilymayburke8413 10 років тому +2

    Explained so well! Thank you

  • @pz0utable
    @pz0utable 13 років тому +2

    I can't believe it, I'm starting to love Linear Algebra

  • @putin_navsegda6487
    @putin_navsegda6487 2 роки тому

    God bless you Khan! Thank you for your work! 😇

  • @맥스웰방정식
    @맥스웰방정식 7 місяців тому

    thx u so much😊😊😊😊😊

  • @hosampb5593
    @hosampb5593 3 роки тому

    Khan Academy saving students' asses all over again
    why can't Professors teach like that in universities?

  • @理科角度看历史
    @理科角度看历史 6 років тому +2

    无可想象的伟大作品,足以名垂青史的杰作!!!!!

  • @Xcrypt1991
    @Xcrypt1991 12 років тому

    Wish I could do the same. I don't go to many lectures but I still have to read my books because Khan Academy's math is not the kind of formal proof-oriented math you learn in pure mathematics

  • @jhonatanhernandez3568
    @jhonatanhernandez3568 5 років тому

    This explanation blew my mind

  • @vko7059
    @vko7059 2 роки тому

    Perfect lecture. Thank you.

  • @baruahsarthak_
    @baruahsarthak_ Рік тому

    Superb explanation!

  • @sana0hk
    @sana0hk 14 років тому +1

    you r my new hero lol! thank you so much

    • @amairanas8631
      @amairanas8631 3 роки тому +1

      omg 10 years ago!! how is life goin now?

  • @SuperChad1313
    @SuperChad1313 8 років тому

    Minus that business right there.......love it.....

  • @bangthatdrumb
    @bangthatdrumb 13 років тому

    these vids are great in conjunction with PAULS online math NOTES

  • @tomasdejmek2520
    @tomasdejmek2520 10 років тому +24

    You made small mistake, when you copied ( v3 u1 ) u1 + ( v3 u2 ) u2; you created "y3 = v3 - ( v3 u1 ) u1 + ( v3 u2 ) u2"
    right is, "y3 = v3 - ( v3 u1 ) u1 - ( v3 u2 ) u2", i think.

    • @thebugbear
      @thebugbear 6 років тому +5

      Yes, the sign changes, or you need to use parenthesis.

  • @rkishei
    @rkishei 12 років тому

    go Purdue! also taking linear second midterm lol
    ... Love your videos Sal, very helpful in understanding these abstract concepts that always get muddled in my head by the book.

  • @linleybaruch738
    @linleybaruch738 4 роки тому

    Please give my exam for me :(
    Thanks for the tutorial, great explanation :)

  • @kenikozo
    @kenikozo 12 років тому +1

    Is there a video from khan that is about "inner product spaces"? Help would be greatly appreciated. Thanks!

  • @rhsee
    @rhsee 13 років тому

    You are a life saver!

  • @ASTROTZUR
    @ASTROTZUR 12 років тому +2

    There is a small mistake at 16:09 the plus in the pasted part should become a minus.

  • @spechtbert
    @spechtbert 13 років тому

    whosss the mann??? khansss the mannn

  • @sukhlegend2614
    @sukhlegend2614 11 років тому

    Best Explanation EVER!

  • @yeubememe2802
    @yeubememe2802 2 роки тому

    Thank you!

  • @gptty
    @gptty 9 років тому +4

    Doing god's work!

  • @wedestan
    @wedestan Місяць тому

    love you Khan

  • @achillesarmstrong9639
    @achillesarmstrong9639 7 років тому

    nice job ,easy to understand.

  • @elu7193
    @elu7193 8 років тому

    thanks! i understood

  • @孙林可
    @孙林可 8 років тому +7

    I'm quite curious, are the subtitles automatically generated? If not, what's going on at 1:46? lul

    • @somebody4061
      @somebody4061 8 років тому +1

      He said, "you can argue the zero vector is in there."

  • @youssefbenhachem993
    @youssefbenhachem993 5 років тому

    Oh thank you so much !

  • @standardcoder1184
    @standardcoder1184 Рік тому

    Do the orthnormal vector basis that we get by Gram-Schmidt are unique

    • @lugia8888
      @lugia8888 Рік тому +2

      No. Orthonormal bases are not unique.

  • @HoloUniverse
    @HoloUniverse 14 років тому

    Much appreciated!

  • @sor715
    @sor715 14 років тому

    hey what program are you using for recording/writing up that stuff?

  • @lowzyyy
    @lowzyyy 7 років тому

    Correct me if i am wrong but you are missing something. When u were making projections u forgot that for example V2 onto V1 is equal to (V2 dot U1)*u1 OVER lenght of u1.
    Why? Because projection of some vector lets say A onto some line s is equal to ||A||cos(angle between A and s)
    Furthermore if say that A vector is V2 then V2 dot u1= ||u1|| projection V2 onto V1 .
    So projection V2 onto V1 =V2 dot u1 OVER ||u1|| so u are missing to devide everytime with lenght of base vector

    • @ga2yb
      @ga2yb 7 років тому

      lowzyyy the sizes of u1 U2 etc are all 1 since it is orthaNORMAL. so you can divide by the size, but since it is 2, it doesn't change the outcome

    • @lowzyyy
      @lowzyyy 7 років тому

      yes, u1 is 1 and lenght is 1.

    • @lugia8888
      @lugia8888 Рік тому

      u is unit length so you divide by 1. check your calculations and think about it some more

  • @muh_guts
    @muh_guts 4 роки тому

    Sal got color blindness, at 14:25 he meant yellow vector not green

  • @Terrax221
    @Terrax221 13 років тому +1

    When i saw the title i was like: "I know Gram-Schmidt, it´s easy", when i finished the Video is was like: "Aaaaaaaaaah, thats how it works!"

  • @marquez2390
    @marquez2390 5 років тому +2

    How do you know everything?

  • @xmrwzw
    @xmrwzw 15 років тому

    thaaaanks a lot

  • @jennabockman727
    @jennabockman727 5 років тому

    thank you.

  • @nahvkolaj
    @nahvkolaj 14 років тому

    I...understand!

  • @leozolotukhin4037
    @leozolotukhin4037 4 місяці тому

    Good evening
    Could someone please explain to me why from proj(v1)v2 we have the result (v2*u1)*u1?
    I didn't get it
    Thanks in advice

  • @amerkhoury8034
    @amerkhoury8034 4 роки тому

    I really wonder why not all profs and books explain that the same way

  • @TheNoHAnthony
    @TheNoHAnthony 12 років тому

    Thank you. Things in my linalg book become too complicated when they just throw theorems and lemmas at you without explaining what the formulas actually mean....

  • @黎銘-s9n
    @黎銘-s9n 3 роки тому

    V_3 is all the linear combinations of v_1, v_2 and v_3, which contains all the vectors in 3 dimension space(assuming it is R^3). in which space does the fourth basis vector v_4 live? Mathematically it's there, but where is it geometrically?

    • @anubhavbhura13
      @anubhavbhura13 3 роки тому

      no where. We as humans do not have a spatial 4 th dimension.

    • @lugia8888
      @lugia8888 Рік тому

      After R^3 we do not consider geometry, only structures.

  • @not1AM
    @not1AM 10 років тому

    thanks

  • @Vrig
    @Vrig 11 років тому

    Hm.. could someone please inform me if this is a correct conclusion:
    When he takes the dot product between (5min-10min) v_2 and u_1 and then multiplies by u_1 it's because the dot product yields the magnitude of the projection and by multiplying it with u_1 he gets the vector x? If this is the case; wouldn't it be the same thing to take dot product between v_2 and v_1 and then divide by |v_1| ?

    • @TheJohnnyPatriot
      @TheJohnnyPatriot 9 років тому +2

      Vrig I thought the same thing when I was doing this in my Linear Algebra class 6 years ago. not sure why you're taking the dot product of the unit vector...the thing is, you still have to multiply by u_1 to get the projection because the dot product is just a number, not a vector

  • @MrBiudsbiribiubu
    @MrBiudsbiribiubu 12 років тому

    Where can i find the bibliography you used for this lecture? Now I've got the idea but i'd like to read it ;/

  • @afmfakhruddin1773
    @afmfakhruddin1773 8 років тому +1

    Proud to be a Bangladeshi!!.........

  • @TheExoticDarkness
    @TheExoticDarkness 9 років тому

    I don't understand quite why he claims that the projection of v2 on to the subspace v1 can be described as (v2.u1)u1. Can someone help me understand, or is there perhaps part of another video that I missed?

    • @AL-jg8pv
      @AL-jg8pv 8 років тому

      taking the dot product of 2 vectors gives you the product of how much the 2 vectors travel in 1 direction....but since u1 is a unit vector...so you can say the dot product 'v2.u1' gives you the component of v1 travelling in the direction of u1 ....though the dot product is just a number.....to actually specify that it is in the of direction 'u1' you multiply the dot product (v2.u1)
      by the vector u1 to give it direction..

  • @internet_user1131
    @internet_user1131 3 роки тому +1

    Why are the concepts of math always made so hard? Why they can't be shown in simple terms like in this video? Who benefits?

    • @lugia8888
      @lugia8888 Рік тому

      Some instructors are simpler than this video too

  • @padmabatinayak2324
    @padmabatinayak2324 2 роки тому

    ❤❤❤❤

  • @StaticSleet
    @StaticSleet 5 років тому +1

    1.75 speed, thank ye, thank ye

  • @lolalukie713
    @lolalukie713 12 років тому

    well a in this case is normal (length of one) so a . a is just one

  • @supersonic174
    @supersonic174 6 років тому +1

    when you compute the projection, you missed the denominator no?

    • @450RacerBill
      @450RacerBill 5 років тому +1

      Aweri Blakely I’m a little late to answer but the denominator is missing because he’s using the unit vector, I had the same question at first. U = v1 / |v1|

  • @suyashmisra7406
    @suyashmisra7406 4 роки тому

    not all heroes wear capes.

  • @danx74
    @danx74 13 років тому

    @redougulas
    I have second midterm tomorrow

  • @valkon_
    @valkon_ 11 років тому +1

    very hard...

  • @Ayplus
    @Ayplus 14 років тому

    SCHMIDTTY!

  • @theoldblood3804
    @theoldblood3804 10 років тому +2

    "Its that easy"...lol

  • @bangthatdrumb
    @bangthatdrumb 13 років тому

    1 professor disliked this video as it made him look bad.

  • @thesparkflyer
    @thesparkflyer 12 років тому

    Gram-Schmidt is the shit

  • @yxooo
    @yxooo 14 років тому

    @TheNef77
    same story

  • @zoala001
    @zoala001 12 років тому

    i cant get it cuz at school we use a diiferent formula for projection.
    projF on a :[( F.a) / (a.a)]. a

  • @karthikeya0804
    @karthikeya0804 4 роки тому

    he thought for the future 11years ago

  • @sherajr
    @sherajr 15 років тому

    You are the man! Saving my ass from my shitty professor!

  • @arajaram19
    @arajaram19 12 років тому

    i love you

  • @-Good4Y0u
    @-Good4Y0u 7 років тому +1

    IS there no audio?

  • @TheNef77
    @TheNef77 14 років тому

    @sherajr You must be in my class. I hate that lady.

  • @antonblue11
    @antonblue11 13 років тому

    @sherajr me too lol

  • @crossiantlover
    @crossiantlover 12 років тому

    me too :P

  • @Want_Smart
    @Want_Smart 6 місяців тому

    You're just spitting English man 😅

  • @lolalukie713
    @lolalukie713 12 років тому

    I started clapping. :')

  • @pepper7591
    @pepper7591 7 місяців тому

    im cooked bruh

  • @redougulas
    @redougulas 13 років тому

    anyone from purdue? i hate linear!

  • @camilly0902
    @camilly0902 13 років тому

    Haha you repeat things a lot, like individual words :)

    • @patmaxable1
      @patmaxable1 4 роки тому

      9 years ago :o, how is life treating you now?

    • @patmaxable1
      @patmaxable1 3 роки тому

      @dragonzito mojado It all went downhill

  • @ForeverEver-cu9dd
    @ForeverEver-cu9dd 7 років тому

    You are my life saver!!

  • @marcmarc1637
    @marcmarc1637 Рік тому

    Thank you!!!

  • @nesrinenaaman1969
    @nesrinenaaman1969 2 місяці тому

    thank you!

  • @blondii0072
    @blondii0072 12 років тому

    Thanks man