Cayley-Hamilton Theorem: Inverse of 3x3 Matrix

Поділитися
Вставка
  • Опубліковано 6 лют 2025
  • How to find the characteristic equation of a 3x3 matrix and use this cubic equation for the matrix to find its inverse...an interesting application of the Cayley-Hamilton Theorem.

КОМЕНТАРІ • 91

  • @Aus10Ham
    @Aus10Ham 6 років тому +39

    The only good video ive found on this topic. Listen at 1.5x speed and enjoy

  • @GAment_11
    @GAment_11 4 роки тому +6

    Never heard of this concept before. All it took was 14min and 34sec to understand! Thank you very much for the clear explanation.

  • @ayan8233
    @ayan8233 Рік тому

    Thank you very much for this video! I didn't know how to use the theorem to find inverse and now its all clear. Please keep up the good work!

  • @superlady6447
    @superlady6447 4 роки тому +3

    Thanks Jay, I really enjoy this lesson , can not thank you enough for explaining the lesson in good and interesting way 😫💗.

  • @iYazeeD10
    @iYazeeD10 2 роки тому

    Hi Jay, you helped me SO MUCH thank you from the bottom of my heart.
    God bless you ❤️
    Love ❤️ from Saudi Arabia 🇸🇦

  • @giorgospanagiotidis3134
    @giorgospanagiotidis3134 4 роки тому +1

    Out of all the C-H videos i watched today, you are getting the like. Though i wasn't a fan of this method to find the characteristic

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      Thank you for your detailed feedback

    • @xwarrior760
      @xwarrior760 4 роки тому +1

      Yup I'd much rather do it the traditional way of substracting the lambda's and finding the det but great vid nonetheless.

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      Thank you!

  • @frankyampton4188
    @frankyampton4188 5 років тому +2

    Extremely useful video, Thank you!

  • @narendramaurya3460
    @narendramaurya3460 3 роки тому

    Thank you I found a new method to use cayley hamilton theorem

  • @vincentsakala8944
    @vincentsakala8944 5 років тому +3

    THANKS JAY YOU ARE VERY EASY AND BRILLIANT TO FOLLOW BUT HOW DO I DOWN LOAD

  • @jewbaby9143
    @jewbaby9143 4 роки тому +3

    Great video! I'm curious, how did you find the formula for the characteristic equation? Is there a general trend for n by n matrices?

  • @alial-nablsi7379
    @alial-nablsi7379 2 роки тому

    You’re videos are amazing..keep it up🔥♥️

  • @georgephilip2769
    @georgephilip2769 5 років тому

    you're a life savior

  • @TAMILPRO_HARIRAM
    @TAMILPRO_HARIRAM 4 роки тому

    The sum is very much useful to me mam and thank you.

  • @dasunnayanashan1040
    @dasunnayanashan1040 3 роки тому

    good video.this video so helpfull for me my university acedemic

  • @kennethsithole6915
    @kennethsithole6915 4 роки тому

    you shld become my ny maths teacher .... yu my hero😍😍😍😍😍😍😍

  • @varadnerkar9042
    @varadnerkar9042 6 років тому +2

    Was helpful ☺ thank you so much

    • @MathsWithJay
      @MathsWithJay  6 років тому

      Thank you!

    • @varadnerkar9042
      @varadnerkar9042 6 років тому

      Umm....i have one more problem . I can calculate the matrix multiplications but I don't know the significane of that process. I mean, why do they have to be multiplied in the same fashion as we use and why not others. Those mathematicians would have surely developed it for worthier uses than getting just marks 😁😁😁😁

    • @varadnerkar9042
      @varadnerkar9042 6 років тому

      It would be a REAL BIG help.... Please help me

    • @MathsWithJay
      @MathsWithJay  6 років тому +1

      Matrices are useful in transformations, so are used in computer graphics; they can also be used as a way of writing n linear equations in n unknowns...these equations can be solved if the determinant of the matrix is not zero.

    • @varadnerkar9042
      @varadnerkar9042 6 років тому

      @@MathsWithJay not like this....I wanted to ask its geometrical significance.....like what happens when we multiply matrices

  • @davideriemma180
    @davideriemma180 3 роки тому

    Awesome video, thank you so much!

  • @louismotte5079
    @louismotte5079 2 роки тому

    thank you for your helpful video :)

  • @عبدالمجيدالعك
    @عبدالمجيدالعك 4 роки тому +1

    Thanks from syria 🌷❤️

  • @yeamin_1898
    @yeamin_1898 3 роки тому

    If the detA was 0 and you still had an answer, would the answer be valid?
    Encountered a similar math

    • @MathsWithJay
      @MathsWithJay  3 роки тому

      If the det is zero, there is no inverse

  • @Hassan-eng
    @Hassan-eng 2 роки тому

    بارك الله فيك

  • @umarrajpura9634
    @umarrajpura9634 2 роки тому

    how would you apply this method to a 2x2 matrix

    • @MathsWithJay
      @MathsWithJay  2 роки тому

      ua-cam.com/video/rcNPErHczbE/v-deo.html uses the theorem to find the power of a 2x2 matrix

  • @mohammadmustafa8673
    @mohammadmustafa8673 5 років тому

    So briefly video
    Thanks.

  • @forthrightgambitia1032
    @forthrightgambitia1032 4 роки тому

    One thing I don't understand... why is lambda^3 positive? Surely the cube -Lambda will be negative?

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      At what time in the video?

    • @forthrightgambitia1032
      @forthrightgambitia1032 4 роки тому

      @@MathsWithJay 0:45, the general formula states there is lambda to the power of 3 as positive. I have actually seen this elsewhere but I'm confused as to why it is the case.

    • @forthrightgambitia1032
      @forthrightgambitia1032 4 роки тому

      I figured it out. I was trying to derive it from first principles with variables rather than numbers and got the reverse formula (-lamba^3 + trace(A)lamba^2 etc...). But then I realised the cubic formula is odd so f(-x) = -f(x) and thus the root f(0) = -f(0) and the two formulas output the same roots.
      Sorry for the stupid question :D

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      I'm glad to see you've sorted it out - thank you for taking the time to explain - it may help someone else in the future.

  • @a7medz0
    @a7medz0 Рік тому

    Thank you!

  • @holyshit922
    @holyshit922 Рік тому

    Why it is not shown here how derive this formula ?
    I know how to do that
    If one column is linear combination of two vectors we can write determinant as sum of determinants replacing column with that vectors
    det([[a_{11},bv_{1}+cw_{1},a_{13}],[a_{21},bv_{2}+cw_{2},a_{23}],[a_{31},bv_{3}+cw_{3},a_{33}]]) = b*det([[a_{11},v_{1},a_{13}],[a_{21},v_{2},a_{23}],[a_{31},v_{3},a_{33}]])+c*det([[a_{11},w_{1},a_{13}],[a_{21},w_{2},a_{23}],[a_{31},w_{3},a_{33}]])
    Cofactor expansion of determinant is also useful

  • @oluwaseunquadri6423
    @oluwaseunquadri6423 Рік тому

    You're awesome 👌🏿

  • @npratiwii2
    @npratiwii2 5 років тому

    hello. can you help me to proof the cayley-hamilton theorem for matrix m x n? thankyou

    • @MathsWithJay
      @MathsWithJay  5 років тому

      @Nurul Pratiwi: Are you trying to use this for a matrix that is not square?

    • @npratiwii2
      @npratiwii2 5 років тому

      @@MathsWithJay yes. I have a journal about that but i stuck on the proof:(

  • @ppjj6574
    @ppjj6574 5 років тому

    thank you .can you recommend a book about this topic?

    • @MathsWithJay
      @MathsWithJay  5 років тому

      @Pp Jj: What level are you studying?

    • @ppjj6574
      @ppjj6574 5 років тому

      @@MathsWithJay hello.thank you for your answer.i'm a PHD student of Mechanical engineering and looking for a book about matrix algebra.(actually,wondering how to solve a matrix equation like as: A^2+A+I=B that B and A both are matrix and B=[-1 2,60] )

    • @MathsWithJay
      @MathsWithJay  5 років тому

      Wouldn't B have to be a square matrix?

    • @ppjj6574
      @ppjj6574 5 років тому

      @@MathsWithJay yes it is a 2X2 matrix.

  • @user-it4iz7pv1g
    @user-it4iz7pv1g 4 роки тому

    Is there a sound? Can't hear something

  • @cuteshinu1915
    @cuteshinu1915 5 років тому

    Tnq you so muchhhhhh mam

  • @varunpuli09
    @varunpuli09 4 роки тому

    sum of the terms of the leading diagonal and det of A are calculated in same way..that's wrong!!! In DET|A| ..diagonal elements must be multiplied the corresponding determinants..

  • @colekole4012
    @colekole4012 4 роки тому

    How to do with a 5x5 matrix

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem generalises so may be useful

  • @nthomas7544
    @nthomas7544 3 роки тому

    3 3 4

  • @heattransfer8003
    @heattransfer8003 5 років тому

    its 7I not 9I

    • @MathsWithJay
      @MathsWithJay  5 років тому

      @Heat Transfer: At what time in the video?

    • @heattransfer8003
      @heattransfer8003 5 років тому

      Maths with Jay 6.51 general form of equation it would have been 7I instead of 9I i think i didnt watch the solution I just found it 7I

    • @MathsWithJay
      @MathsWithJay  5 років тому

      Where did you find the "7" from?

    • @heattransfer8003
      @heattransfer8003 5 років тому

      @@MathsWithJay oh my bad im sorry ima fool there is no wrong about it