Edward Witten: "From Gauge Theory to Khovanov Homology Via Floer Theory”

Поділитися
Вставка

КОМЕНТАРІ • 7

  • @francescos7361
    @francescos7361 2 роки тому

    Khovanon homology , thanks for this lectures from Witten and Perelman on this platform .

  • @jospina65
    @jospina65 5 років тому +2

    It is interesting to note that Professor Witten has outlined gauge theory interpretations of Khovanov homology and the Jones polynomial, in which the Seidel-Smith space (certain symplectic manifold) is viewed as the moduli space of solutions to the Bogomolny equations.

    • @wcottee
      @wcottee 5 років тому

      That's what I was thinking...NOT :)

  • @jospina65
    @jospina65 Рік тому

    From Gauge Theory to Khovanov Homology via Spatial refinements: Starting from the equations KW and HW, certain framed flow category which I will name "Witten category" must be constructed. Using the Cohen-Jones-Segal mechanism acting on the Witten category, certain Witten spectrum is obtained. Then, the singular homology of the Witten spectrum is precisely the Khovanov homology.

  • @ConstructiveCriticHD
    @ConstructiveCriticHD 5 років тому +4

    Skip to 4:08

  • @SHOMEEEEEE
    @SHOMEEEEEE 7 років тому

    Loved it. Very enlightening!

  • @MrMathjordan
    @MrMathjordan 5 років тому

    This material is trivial. hahaha