The Mathematics of Mechanisms (

Поділитися
Вставка
  • Опубліковано 25 вер 2024
  • Entry for the 2023 Summer of Math Exposition
    Sources:
    - R. L. Norton, Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
    - D. Eberly, Intersection of Linear and Circular Components in 2D, www.geometrict...
    The code used to make the animations can be found at:
    github.com/mti...

КОМЕНТАРІ • 136

  • @Axman6
    @Axman6 Рік тому +72

    I’m only a few minutes in, but I wanted to say this video is beautiful; the colour scheme, the sizes of everything, the animations, the fading in and out. These are little details that are hard to get right, well done- subscribed ❤

  • @YTomS
    @YTomS Рік тому +116

    Criminally underrated channel, what a nicely done video.

    • @godfreypigott
      @godfreypigott Рік тому +10

      Based on ONE video posted 3 weeks ago, where your comment was posted two weeks ago?

    • @slepenb
      @slepenb 10 місяців тому +1

      The accent makes it tough to follow

    • @godfreypigott
      @godfreypigott 10 місяців тому

      @@slepenb It is easy at 75% speed.

  • @bigbluebuttonman1137
    @bigbluebuttonman1137 Рік тому +32

    The math of mechanisms is super fascinating to me.
    Going into a machine shop is like being a kid in a candy store for me. So much stuff, and every little detail has its reasons for being there in one way or another.

    • @magnuswootton6181
      @magnuswootton6181 10 місяців тому

      yeh levers and cranks fit into maths perfectly.

  • @thecalculusofexplanations
    @thecalculusofexplanations Рік тому +23

    Brilliant, I taught some of this stuff to engineers once upon a time, I wish I'd had this video to show them. Well done

  • @gianlaager1662
    @gianlaager1662 Рік тому +11

    Very nice animations and great video. Please keep it going with videos like this.

  • @JaredBrewerAerospace
    @JaredBrewerAerospace Рік тому +7

    Perfect! Deep and simple is more essential than shallow and complex. It doesn't matter how many times I have taught or been taught the same topics, everyone at any level has something to gain from the way you present these fundamentals.

  • @sundown456brick
    @sundown456brick Рік тому +6

    Im loving this movement, SoME is the best thing ive ever seen
    great to have found you, looking forward for more content, keep the good quality🎉❤

  • @zacharytoth1065
    @zacharytoth1065 Рік тому +2

    Im taking a Mechanical Design class right now, and am definitely sharing this video with my friends. Its a very clear and concise recap of some of the topics covered in class, and will be helpful in getting a better grasp of the topic.

  • @PhilipMurphyExtra
    @PhilipMurphyExtra Рік тому +2

    Such a well produced video, Glad UA-cam suggested it.

  • @ZimmervisionCZ
    @ZimmervisionCZ Рік тому +2

    This is really well done! Well-explained, beautifully designed and animated. This immediately makes me want to go out and program a 2D mechanism-based video game

  • @guillegilcriado6879
    @guillegilcriado6879 Рік тому +4

    This video is so well produced. Great explanation, simple yet complete. The animations are so cool and well made. Overall, amazing video!!! New sub here! ^^

  • @wellscampbell9858
    @wellscampbell9858 Рік тому +1

    @mtirado Excellent video, flows well while covering the topic completely enough to serve as video reference material. It's definitely going in my tech reference links. Thanks!

  • @Haagimus
    @Haagimus Рік тому +2

    Great video, very well explained mechanics, looking forward to your future content 🤙🏻

  • @mani_mincraft
    @mani_mincraft Рік тому +1

    This is so cool! That circle approach is such an amazing method!

  • @bdzack2226
    @bdzack2226 Рік тому

    This video is having too much knowledge and awesome way of representation. Crazy, keep up the great work. THANKS

  • @tenix6698
    @tenix6698 Рік тому

    OMG, That's something I've been thinking about for a long time, but never got to it. Thank you for providing such a good video on this topic!!

  • @derektauffner8828
    @derektauffner8828 Рік тому +1

    Fantastic video and loved the animations. Well done.

  • @agrathnam
    @agrathnam 11 місяців тому

    Beautiful graphics and great explanation. Looking forward to more videos from you.

  • @adissentingopinion848
    @adissentingopinion848 Рік тому

    That last five bar linkage just threw me through a loop and subsequently jammed me such that √4ac = 0. Immaculate lesson into such a complex topic.

  • @zzznah
    @zzznah Рік тому

    Congratulations on making this very informative and beautiful video! As an aspiring UA-camr I know how much hard work it takes

  • @Jaylooker
    @Jaylooker Рік тому +2

    The discrete Fourier series describes a mechanism which can draw any closed curve using epicycles. If every coupler mechanism can only draw closed curves as well, then there must be an equivalence between two coupled discrete Fourier series and a single discrete Fourier series. Describing what mathematically represents the coupling between the two discrete Fourier series is difficult.

  • @Mark-gd5yz
    @Mark-gd5yz 11 місяців тому

    More! Please. You have a rare talent: Use it.

  • @moralboundaries1
    @moralboundaries1 4 місяці тому

    so interesting and enjoyable, thank you for the lesson!

  • @yaacheese8643
    @yaacheese8643 10 місяців тому

    You need to make more videos on Mechanisms! Awesome video, I subscribed hoping to see more from you in the near future!

  • @pierreabbat6157
    @pierreabbat6157 Рік тому +1

    I've written a program to simulate the Chebyshëv linkage, which traces the Nilla curve. The bottom is nearly flat, while the top is nearly an arc. At four equally spaced times, it's at three points in a line on the bottom and at the middle of the top. It looks like the cross section through the middle of a Nilla cookie.

  • @sahhaf1234
    @sahhaf1234 Рік тому

    exactly the video i was looking for.. pls continue..

  • @jormando2002
    @jormando2002 11 місяців тому

    Wow... It is amazing, thank you so much for this video ❤

  • @senthilkr1970
    @senthilkr1970 Рік тому

    Fantastic videos, amazingly done. 👏👏👏

  • @danielpitts6913
    @danielpitts6913 Рік тому +3

    Very nice. Makes me want to write a simulator for this. One more project to the backlog lol.
    It doesn’t seem like it would be too difficult to calculate some physical properties for these after determining big positions based on the constraints. Like torque or linear force.

  • @ico-theredstonesurgeon4380
    @ico-theredstonesurgeon4380 Рік тому +2

    This video Is really well done! I would love It if you could also talk about the forces that act on the mechanism. I am a robotic enthusiast and that would be really helpful

  • @bubbaloo8049
    @bubbaloo8049 Рік тому

    Gran video, el mejor por lejos. Muy bueno !!!

  • @alfredovillal5263
    @alfredovillal5263 10 місяців тому

    Exelent Video,, very nice.

  • @Garglicious
    @Garglicious Рік тому

    Cannot wait for more videos from you !

  • @TheMagicFellow
    @TheMagicFellow Рік тому

    Beautiful; breath-taking

  • @sonu-jangir
    @sonu-jangir 10 місяців тому

    So helpful video...
    🎉🎉🎉
    Thanks for sharing...
    ❤❤❤

  • @sashiyendamuri1018
    @sashiyendamuri1018 Рік тому

    Very nicely explained with simple graphics...

  • @nttn3666
    @nttn3666 Рік тому

    This is so cool, please make more videos on this topic.

  • @jerry-yu7yi
    @jerry-yu7yi 2 місяці тому

    i really really love this video

  • @geraldopontes37
    @geraldopontes37 Рік тому

    Excelente vídeo! Thanks you

  • @nahuelpiguillem2949
    @nahuelpiguillem2949 Рік тому

    Wowwwww mannnnnn, it's greatttt. Pretty clear

  • @hjfreyer
    @hjfreyer Рік тому +1

    Very nice! I'd love to learn more about how you disambiguate between the cases with multiple solutions. Like, for each place with ambiguity do you just have to pick either the positive or negative root?

  • @shivabalaji6668
    @shivabalaji6668 Рік тому

    Extraordinary 🤩🤩🤩🤩😍 pls upload many more videos like this

  • @christianprice4049
    @christianprice4049 Рік тому

    This is GORGEOUS!!!

  • @1022darkar
    @1022darkar 10 місяців тому

    exelente video sigue con tu contenido

  • @_krzysio_6910
    @_krzysio_6910 10 місяців тому +1

    In Robotics those are so simple mechanisms...
    We have really great methods there - check it out.
    We just use matrixes for everything.

  • @mohammadkaheel973
    @mohammadkaheel973 11 місяців тому

    Amazing 👏

  • @simongross3122
    @simongross3122 Рік тому

    This is so clever and fascinating

  • @databang
    @databang Рік тому +1

    Thanks for the video. Very nice illustrative presentation that’s easy on the eyes and labeled well. I’m curious what software you use to construct models and animate them, is it Adobe AE or something more specific?

  • @PeterNerlich
    @PeterNerlich Рік тому +1

    Fascinating video! I'm most interested in the inverse problem, finding a mechanism that produces a certain path. In your example, you show a how to derive a solution of an easy instance of this problem, where a simple four bar linkage is sufficient, and using only three "samples" of position+rotation of a segment that should be reached by the mechanism. But how would one go about synthesising for a path like the one in 13:32?

  • @AllenKnutson
    @AllenKnutson Рік тому

    ¡Que rico! And while manim has its place I'm especially pleased to see explorations of other visual options. (The rectangular boundary is an especially unusual choice and I wish I'd thought of it!)

  • @petrkisselev5085
    @petrkisselev5085 Рік тому

    Great presentation !

  • @squantaai
    @squantaai 11 місяців тому

    Beautiful

  • @AtharavD
    @AtharavD Рік тому +1

    Please make more video's like this.
    ( like if any one wants video's like this )

  • @mrshodz
    @mrshodz Рік тому

    Great explanation.

  • @MissPiggyM976
    @MissPiggyM976 Рік тому

    Very interesting, thanks!

  • @장종훈-u1t
    @장종훈-u1t Рік тому

    깔끔하고 멋지네요. 감사합니다~

  • @polyhistorphilomath
    @polyhistorphilomath Рік тому +1

    The discussion of jamming position was interesting. I have to wonder if there is a way to limit or constrain the configuration space during synthesis such that the number of degrees of freedom can only ever increment or decrement (by one). Similar to the K-map concept the intent would be to prevent simultaneous changes and thus minimize undesirable or indeterminate behavior.

  • @ToMMiTTo
    @ToMMiTTo Рік тому

    Big clap per your video! Awesome.. please do follow up videos. I would suggest to use a math editor for formulas (latex or similar), so they are more easily readable

  • @SimpleLangSolution
    @SimpleLangSolution Рік тому

    God tier video and explanation.

  • @chienbanane3168
    @chienbanane3168 Рік тому

    This is great for developing walker linkages!

  • @jairoc.peralta
    @jairoc.peralta 7 місяців тому

    Buen video, compa

  • @herbertattema9890
    @herbertattema9890 4 місяці тому

    the algorithm did you bad, how am I only now finding this channel

  • @sifatahmed1413
    @sifatahmed1413 Рік тому

    Excellent

  • @onadja
    @onadja 9 місяців тому

    Excellent animation and great explanation!
    What editing software did you use?
    THANKS !

  • @farhatali3634
    @farhatali3634 Рік тому

    Its a beautiful video. Thanks for all the effort and thanks for sharing with all of us. Simply amazing. Kind request to share which software or programming language you have used for creating those beautiful animations. Regards.

  • @TechTerminater
    @TechTerminater Рік тому

    Keep it up . Very good video

  • @Spiegelradtransformation
    @Spiegelradtransformation 11 місяців тому

    Well Done.

  • @HannyDart
    @HannyDart 10 місяців тому

    Some time ago i was trying to analyze a rather complicated 3d mechanism using this "distance & circles" approach but for some reasons my equations were no longer symbolically solvable. Ive verified my numerically obtained solutions several times and they were correct so the equations had to be correct too.
    Since then I was interested in a proper way to do the math behind it...

  • @anandjoshi9716
    @anandjoshi9716 Рік тому

    Really good

  • @juancarlossanchezveana1812
    @juancarlossanchezveana1812 11 місяців тому

    Amazing

  • @francomaccaroni795
    @francomaccaroni795 Рік тому

    very nice video, good job

  • @emil_richard
    @emil_richard 10 місяців тому

    This is so well produced! Can you recommend any program where anybody can test such configurations easily?

  • @disaffected_npc
    @disaffected_npc Рік тому

    So, I've been trying to figure out how to visually represent some stuff - I'm quite hypermobile/have some pretty peculiar stuff going on with my nervous system and I want to find a way to create a hard map of the range of motion of my bones/joints, and then somehow overlay that with my internal/imagined map of my body. For most of my life I've had a bunch of involuntary tics, and since I was a child they were dismissed as a baked in problem of being a flappy autistic person and thus to be pretty much ignored - but upon realising that they were a manifestation of problems with connective tissue/rooted in weird stuff with my nervous system, I started engaging with/adjusting some of them - one in particular had been constantly subluxing my jaw and had (as wild as this sounds) resulted in me losing an enormous range of my sense of touch/pressure detection. Fixed the issue with my jaw and trained myself to pay attention to what my body was actually trying to do and over the past two years my sense of touch/proprioceptive map has exploded outwards from my neck/shoulders/spine. I feel like this kind of map of where my body actually can move, and being able to mark onto that which ranges - while possible, were destructive/overstretched joints would be incredibly useful. It also feels like something that someone must already have done to some degree. Do you have any suggestions on resources to look into? I'm not a mathematician/programmer of any kind - but this feels like the most promising tool with which to build the physical/mechanical part of what I need to create to make useful/discrete statements about what's been happening

  • @arkadiusz4133
    @arkadiusz4133 11 місяців тому

    I would be very pleased if you will make a few videos how to solve some practical tasks about power, inertia, moments etc. In mechanisms

  • @tonyfarah7685
    @tonyfarah7685 Рік тому

    Nice video, but i just wanted to understand more about equations, so i hope you will explain it in detail please
    I liked your visualization ❤

  • @jakobr_
    @jakobr_ Рік тому +3

    Can complex numbers be applied to this math? I’m curious because there’s a lot of rotation, and complex numbers seem to fit in wherever you see rotation.

    • @mtirado
      @mtirado  Рік тому +5

      Complex numbers are just 2D vectors, so yes!

    • @derektauffner8828
      @derektauffner8828 Рік тому

      This is close but not entirely true. There is an isomorphism between 2D vectors and complex numbers. And you need to be careful on how you treat the two if you want one to be the other! There is a fantastic answer on Math Stack Exchange if you google 2D vectors as complex numbers. @@mtirado

    • @dsgowo
      @dsgowo Рік тому

      You can also use conformal geometric algebra to describe not just rotation, but also translations as well as the circles defining the possible positions of P2 and P3 (or similar circularly constrained points in a linkage). Many of the calculations done in this video, such as finding the intersections of two circles or constructing a circle from three points on its perimeter, are expressed very elegantly in this language. To top it off, it generalizes very elegantly to 3D and higher dimensions, so you can get all the benefits of the complex numbers as well as quaternions and dual quaternions inside CGA.

    • @crimsnblade8555
      @crimsnblade8555 17 днів тому

      they are used commonly, actually

  • @MrAminmohamed
    @MrAminmohamed 9 місяців тому

    Please make another video of more examples of building mechanics without anything just basic geometry. This way kids in middle schools will be able to use their compas and rulers to draw prototypes

  • @realcygnus
    @realcygnus Рік тому

    Quite nifty !

  • @pavelperina7629
    @pavelperina7629 Рік тому

    I once tried to simulate heusinger gear of steam engine and failed at combination lever.
    If I recall problem is that contrain is something like end and mid point are allowed to move on two circles and distance is defined by distance of mechanical joints. Third point is on some curve which I cannot properly describe. Other link has the same or similar contrains and intersection of these curves is a solution. Maybe it can be solved for tens of possible positions, drawing line segments between solutions, repeating for other links, finding intersections of line segments approximating these two curves and subdividing intervals to get more precise result. I just can't imagine how people designed that 150 years ago or so, because solving something like 4-5 equations with trigonometric functions is hard. Maybe tthey did not need to know precise position of joint, they just made sure that it satisfies number of degrees of freedom and that it combined movements of two levers with a proper ratio and made some smaller model from sheets of metal with holes and rivets.

  • @tombouie
    @tombouie Рік тому

    Interresting,
    Giving an arbitrary output motion, ?might the entire linkage soultion set be solved for?

  • @SimplexonYt
    @SimplexonYt 10 місяців тому

    at some parts of the video u have to get the square of a vector or multiply two vectors with each other But how are you supposed do do that should i multiply/square the single components of the vectors, should i take the cross product of them, should i use the dot product or something different?

  • @migfed
    @migfed Рік тому +1

    This is a superb video. Just one suggestion with all due respect, try to vocalise better, there were some parts that I could not get it. And another thing, try to use an equation editor for displaying your algebra. Even PowerPoint has got one. So once again, let me congratulate you for that great video.

  • @hbenzd5301
    @hbenzd5301 Рік тому

    Gooood..

  • @M0rshu1
    @M0rshu1 Рік тому

    This is essentially the math you will be doing in the last 3 semesters of a mechanical engineering bachelor’s.

  • @neycorelbolanos8910
    @neycorelbolanos8910 11 місяців тому

    Gracias. No te imaginas cuanto tiempo estuve buscando un vídeo o un canal como este.
    Por ahí 10 años buscando , en mi idioma español bo existe tal cosa .
    En inglés hay mejores vídeos pero éste es el mejor , justo lo que necesito.
    Gracias.

  • @FrostyHandled
    @FrostyHandled 10 місяців тому +1

    anyone else feel bad for the universe for having to do so much computation

  • @labkome
    @labkome Рік тому

    Please create more videos bro, respect from indonesia

  • @bradhayes8294
    @bradhayes8294 Рік тому

    A crank slider is a four-bar linkage also.

    • @mtirado
      @mtirado  Рік тому +1

      Yes but it has a prismatic joint. I focused on revolute joints only.

    • @bradhayes8294
      @bradhayes8294 Рік тому

      @@mtirado I had a mechanisms class as an undergraduate mechanical engineering student and an advanced analysis and synthesis of mechanisms class as a graduate student. We used primarily the vector loop-closure method for mechanism analysis. We used both analytical and graphical methods for mechanism synthesis. One of the final projects we had was to derive the position, velocity, and acceleration equations for a 10-bar John Deere level-lift mechanism. I also had an advanced dynamics of machinery class as a grad. student. One of my favorite analysis methods was the Chace vector analysis method for 3-dimensional mechanisms.

  • @BradleySlavik
    @BradleySlavik Рік тому

    At 9:43 the |U|^2 is represented by |U| in the bottom equation that threw me until I saw the mistake.

  • @Maria-ig6yd
    @Maria-ig6yd Рік тому

    But egual identicall component on a movements pedals not have a problem, on a movements, but if not is, have a problem

  • @foxprojects247
    @foxprojects247 Рік тому

    I love this!

  • @xenorzy9331
    @xenorzy9331 Рік тому

    Nice.

  • @alcyonecrucis
    @alcyonecrucis Рік тому

    Wow good job. Do these paths have equations ??

    • @mtirado
      @mtirado  Рік тому

      They have, but I didn't take the time to obtain them.

  • @RajSingh-ln1mn
    @RajSingh-ln1mn Рік тому

    Bolo zuban kesari , I really needed this video , really helpful and informative, keep sharing these . ❤

  • @OTEngineering-mh6qg
    @OTEngineering-mh6qg Рік тому

    The content of this video have whole chapters in applied mechanics: Dynamics textbooks for engineering 😂

  • @coledavidson5630
    @coledavidson5630 Рік тому

    Machine dynamics!

  • @nad2040
    @nad2040 Рік тому

    i think arglin kampling likes this stuff

  • @seeker4430
    @seeker4430 Рік тому

    Could you please make more such videos

  • @raylopez99
    @raylopez99 Рік тому

    the old 4-bar linkage mechanism.

  • @kraftnn7859
    @kraftnn7859 10 місяців тому

    In our country this is only taught in high schools.