A very tricky math question with exponents | Can You Solve?

Поділитися
Вставка
  • Опубліковано 14 лис 2024

КОМЕНТАРІ • 29

  • @gauravkushare111
    @gauravkushare111 Місяць тому +4

    assume x= 2 to the power m , so 2^2^m=2^m^32 hence 2^m=m*32 if we put m=8 then 2^8=32*8 which is 256 or 2^2^n=n+5 hence n=3 by considering m=2^n . hence x=2^m=2^8=256

    • @jpl569
      @jpl569 Місяць тому +2

      That's how I made it... much faster and smarter than the video ! Notice that there is a negative solution, which is X ~ - 0,979..., easy to prove by studying the two functions 2^x and x^32, but I didn't find the "exact" value... 🙂

  • @wes9627
    @wes9627 Місяць тому

    Because x is raised to an even power, this equation potentially has three real roots.
    2^{-1}0^{32}, so a real root exists between -1 and 0.
    2^1>1^{32} and 2^2

  • @SunilPandey-lb5bv
    @SunilPandey-lb5bv Місяць тому

    Wowwww amazing 👏 😍 🙌 ❤️ 💖 ♥️ 👏 😍 🙌 ❤️ 💖 ♥️ 👏 😍 🙌 ❤️ 💖 ♥️ 👏 😍 🙌 ❤️ 💖 Explanation ❤❤❤❤❤

  • @MrWhyWhyWhy
    @MrWhyWhyWhy Місяць тому +1

    Really really nice nice job❤

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Місяць тому +1

    Input
    2^256 = 256^32
    Result
    True
    Left hand side
    2^256 = 115792089237316195423570985008687907853269984665640564039457584007913129639936
    Right hand side
    256^32 = 115792089237316195423570985008687907853269984665640564039457584007913129639936
    Logarithmic form
    256 log_2(2) = 32 log_2(256)

  • @Mr.pavan0
    @Mr.pavan0 Місяць тому

    ❤❤

  • @SALogics
    @SALogics Місяць тому

    Nice problem! nice solution! ❤❤

  • @shardasmakeover1166
    @shardasmakeover1166 Місяць тому +1

    Very nice

  • @kanangovindan7290
    @kanangovindan7290 Місяць тому

    Nice

  • @SidneiMV
    @SidneiMV Місяць тому

    2ˣ = x³²
    (2ᵃ)ˣ = x³²ᵃ
    x = 2ᵃ = 32a
    a2⁻ᵃ = 1/32
    -a2⁻ᵃ = -1/32 = -(2)⁻⁵
    -(2)⁻⁵ = (-2ᵘ)2⁻ᵘ⁻⁵
    2ᵘ = u + 5 => u = 3
    -(2)⁻⁵ = -8(2)⁻⁸
    -a2⁻ᵃ = -8(2)⁻⁸
    -a = -8 => a = 8
    x = 2ᵃ => x = 2⁸ = 256

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому

    4 2^2 (x ➖ 2x+2) x^2^16 x^2^4^4 x^2^4^4 x^2^2^2^2^2 x^1^1^1^1^2 x^1^2(x ➖ 2x+1).

  • @JahidAlHasan-ro8hu
    @JahidAlHasan-ro8hu Місяць тому

    সেই হইসে

  • @nikhilcv123
    @nikhilcv123 Місяць тому

    X=1.022

  • @Nikos_Iosifidis
    @Nikos_Iosifidis Місяць тому

    At 7:10 - 7:30 you claim that the unique root of the equation is x=256.
    This is not correct. See why:
    The function f(x) = x^(1/x) is not 1-1 and from a relation of the form x^(1/ x)=b^(1/ b) we cannot always conclude x=b
    The equation may have another root. Eg the equation x^(1/x) =2^(1/2) is true for both x=2 and x=4 , i.e. 2^(1/2)=4^(1/4) but it is not 2=4
    Certainly x=b is an obvious root, but this is not a solution of the equation. To solve the equation, all its roots must be found, and in this particular case it was not proved that there are no other roots.
    Verification is also not necessary. It is certain that the root found from the solution of the equation will verify it.
    The equation was not completely solved. There are two more roots 1.02239 and -0.97902
    It is easy to prove the existence of these roots by applying the Bolzano theorem on the intervals [1, 2] and [-1, 0] for the function f(x)=2^x-x^32
    These roots can be found using Lambert functions.
    For more details and the complete solution of the equation x^(1/x)=a watch my channel named L+M=N at: www.youtube.com/@Nikos_Iosifidis/videos
    The solution of the equation x^(1/x)=a is at: ua-cam.com/video/oSoJ5IsT_1g/v-deo.html and the video’s name is: Maths for everyone No 46. Study and solution of the equation x^(x^(-1))=a
    A very similar equation to the equation 2^x=x^32 is solved οn my channel. It is the equation 2^x=x^2 and it also has 3 roots. You can watch this at: ua-cam.com/video/aB0FeExPUsk/v-deo.html
    I have also presented 2 videos about Lambert functions W_-1 and W_0
    One video is called Maths for everyone No 47 - Lambert functions W_0 and W_-1
    and located at: ua-cam.com/video/eeW52hA1oc0/v-deo.html
    This video contains the relevant theory of these functions.
    The other video is called Maths for everyone No 48 - Solving equations using Lambert functions W_1 and W_0
    It is located at: ua-cam.com/video/i5plrWBTX0U/v-deo.html
    In this video I solve 17 equations using Lambert functions covering almost all cases and explaining the mistakes and omissions in solving these equations.
    I'd love for you to subscribe to my channel and comment on topics I present.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Місяць тому +1

    X=256 final answer

  • @ТигрМудрый
    @ТигрМудрый Місяць тому

    х=1,022

  • @jtechnicalgaming7831
    @jtechnicalgaming7831 Місяць тому

    I solved in half page

  • @benshapiro8506
    @benshapiro8506 Місяць тому

    r u Castilian? if so i am glad.

  • @satyadhi5679
    @satyadhi5679 Місяць тому

    2 to the power root 2 is rational number or irrational number please reply

  • @БорисШевчук-м9ц
    @БорисШевчук-м9ц Місяць тому

    Есть ещё 2 решения:
    X=1,022393
    X= --0,979017

  • @robotnikkkk001
    @robotnikkkk001 Місяць тому

    .....JUST DIFF/INTEGRAL AND IT'LL BE faster
    ........I JUST *hate* LINEAR ALGEBRA

  • @payoo_2674
    @payoo_2674 Місяць тому +1

    2^x = x^32
    ln(2^x) = ln(x^32)
    x*ln(2) = 32*ln|x| ===> two cases
    1st case: x > 0
    x*ln(2) = 32*ln(x)
    ln(x)*x^(-1) = ln(2)/32
    ln(x)*e^ln(x^(-1)) = ln(2)/32
    ln(x)*e^(-ln(x)) = ln(2)/32
    -ln(x)*e^(-ln(x)) = -ln(2)/32
    W(-ln(x)*e^(-ln(x))) = W(-ln(2)/32)
    -ln(x) = W(-ln(2)/32)
    ln(x) = -W(-ln(2)/32)
    x = e^(-W(-ln(2)/32)) ===> -1/e < -ln(2)/32 < 0 ===> 2 real solutions
    x₁ = e^(-W₀(-ln(2)/32)) = 1.0223929402057803206527516798494005683768365119132864517728278977...
    x₂ = e^(-W₋₁(-ln(2)/32)) = 256
    2nd case: x < 0
    x*ln(2) = 32*ln(-x)
    ln(-x)*x^(-1) = ln(2)/32
    -ln(-x)*x^(-1) = -ln(2)/32
    ln(-x)*(-x)^(-1) = -ln(2)/32
    ln(-x)*e^ln((-x)^(-1)) = -ln(2)/32
    ln(-x)*e^(-ln(-x)) = -ln(2)/32
    -ln(-x)*e^(-ln(-x)) = ln(2)/32
    W(-ln(-x)*e^(-ln(-x))) = W(ln(2)/32)
    -ln(-x) = W(ln(2)/32)
    ln(-x) = -W(ln(2)/32)
    -x = e^(-W(ln(2)/32))
    x = -e^(-W(ln(2)/32)) ===> ln(2)/32 > 0 ===> 1 real solution
    x₃ = -e^(-W₀(ln(2)/32)) = -0.979016934957784612322582550011650068748090048886011676265377083...

  • @prollysine
    @prollysine Місяць тому +1

    ln2/2^5 , /*2^3/2^3 , 2^3*ln2/2^8 , 8*ln2*e^(-)8*ln2=lnx*e^(-lnx) , /*(-1) , -8*ln2*e^(-)8*ln2=-lnx*e^(-lnx) ,
    case 1 , -8*ln2=-lnx , ln2^8=lnx , x1=2^8 , x=256 ,
    case 2 , W(-ln2/32)=-lnx*e^(-lnx) , W(-ln2/32)=-0.022145899 , -0.022145899=-lnx , x=e^0.022145899 , x2=1.02239 ,
    test , x1=256 , 2^256=1.15792*10^77 , x1^32=1.15792*10^77 , OK ,
    test , x2=1.02239 , 2^1.02239=2.03129 , 1.02239^32=2.03129 , OK ,

    • @allanmarder456
      @allanmarder456 Місяць тому

      Exactly right. If you approach this using the Lambert W function it becomes clear that the problem has two solutions! Just because
      you match the left and right hand sides for a value of x does not mean you can't do the same with other values. The equation x^2 = 2^x
      works for both x=2 and x=4.

    • @robotnikkkk001
      @robotnikkkk001 Місяць тому

      ...ORJUST USE DOUBLE DIFF
      .......BASIC EXAMPLE OF 1ST COURSE AT MATH ANALYSIS

  • @jesterman1302
    @jesterman1302 Місяць тому

    I stopped watching as soon as you copied the equation