Integration By Partial Fractions (irreducible quadratic factors)

Поділитися
Вставка
  • Опубліковано 28 гру 2024

КОМЕНТАРІ • 44

  • @bprpcalculusbasics
    @bprpcalculusbasics  3 роки тому +61

    Bloopers: ua-cam.com/video/imiAEXDRDys/v-deo.html

  • @arnavsharma9312
    @arnavsharma9312 3 роки тому +282

    5:16, hmmmmm. I wonder was removed

    • @Lance0
      @Lance0 3 роки тому +81

      Yeah idk what it could be, ah probably nothing major and embarassing

    • @bprpcalculusbasics
      @bprpcalculusbasics  3 роки тому +92

      😂

    • @zyoom8796
      @zyoom8796 3 роки тому +30

      And I love how he just emphasised *128* like he won’t let himself make a mistake this time

    • @fizzywizzylemonsqueezy1774
      @fizzywizzylemonsqueezy1774 3 роки тому +1

      xD

  • @bos8196
    @bos8196 3 роки тому +33

    In Romania we don't use those methods, but i love how you present it!! I had once a chance to use one of your methods in class and my classmates were shocked ;)) keep on the great work, professor!!!! Many good whishes from Romania!!

  • @alberteinstein3612
    @alberteinstein3612 3 роки тому +24

    You make me love Calculus even more than I already do 😁

  • @adonnis1
    @adonnis1 3 роки тому +103

    I made the incredible mistake of reading “Calc 2” at the beginning as “Algebra 2”. Wow was I confused the entire video

    • @locke8412
      @locke8412 Рік тому +19

      i didnt make that mistake and im still confused LMAOO

    • @jazduh1235
      @jazduh1235 10 місяців тому

      @@locke8412LOL

  • @kormosmate2
    @kormosmate2 3 роки тому +30

    Last time i had to integrate something like these, i had an x^2+1 as factor in the denominator. I thought "ehh let's try using the cover-up method with complex numbers"'. Turns out it still works! The result will be a complex number in the from a+bi, but it's expectable, since you're looking for two coefficients in the numerator. So a and b will actually be B and C int the partial fraction.

    • @carultch
      @carultch Рік тому

      My preferred method for his example at 3:20. Use strategic x-values, rather than setting up a system of equations, to find B & C.
      (8*x^2 - 10*x - 3)/[(x - 4)*(x^2 + 1)]
      Set up partial fractions, with the (x - 4) term first:
      (8*x^2 - 10*x - 3)/[(x - 4)*(x^2 + 1)] = A/(x - 4) + (B*x + C)/(x^2 + 1)
      Cover-up method for A, at x = +4:
      A = (8*4^2 - 10*4 - 3)/[4^2 + 1] = (128 - 40 - 3)/17 = 5
      Strategically let x = 0, and x = 1, to find B & C:
      (8*x^2 - 10*x - 3)/[(x - 4)*(x^2 + 1)] = 5/(x - 4) + (B*x + C)/(x^2 + 1)
      At x=0:
      -3/[(-4)*(+1)] = 5/(-4) + C
      3 = -5 + 4*C
      C = 2
      At x=1:
      (8 - 10 - 3)/[(1 - 4)*(1 + 1)] = 5/(1 - 4) + (B + 2)/(1 + 1)
      -5/(-3*2) = -5/3 + (B + 2)/2
      5 = -10 + 3*B + 6
      B = 3
      Thus our partial fraction result is:
      (8*x^2 - 10*x - 3)/[(x - 4)*(x^2 + 1)] = 5/(x - 4) + (3*x + 2)/(x^2 + 1)

  • @KK-sn7ct
    @KK-sn7ct Рік тому +9

    5:11 If you're here from the bloopers video

  • @LheannMichelleFlorento-xc7ux
    @LheannMichelleFlorento-xc7ux 8 місяців тому +5

    I like it of how he holds a Pokemon mic
    😂

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому +21

    Hello teacher
    If you don't like integral and parenthesis next to each other, you can use bracket instead of parenthesis!
    Or ...or you can use fatter integral (integral with obesity!)
    I love you teacher

  • @Joseph973
    @Joseph973 9 місяців тому

    I love the poster in the background! Where can I get one??

  • @craztic8810
    @craztic8810 2 місяці тому

    You are the best sir 😁😁

  • @nimifhana
    @nimifhana 2 місяці тому

    Watched this video while doing homework and it was helpful, then on the exam l took today, this was the case and completely forgot what to do 😭😭😭 but your vids are helpful, thanks!

  • @janmejaypant4181
    @janmejaypant4181 3 роки тому

    Thanks.... was struggling with the same problem

  • @alam8496
    @alam8496 3 роки тому +1

    Excellent solution ✌👍😀

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому +15

    What about *as always: That's It* ❓❓

  • @nemanjalazarevic9249
    @nemanjalazarevic9249 2 роки тому +1

    I think for the first one trig sub works
    x=3tan0
    dx=3sec²0
    tan⁴0/9sec²0 sec²0 d0
    tan⁴0/9 d0
    1/9 ×Integral(tan⁴0)
    And then it gets absurd
    (Integral of tan⁴0=tan³0/3 -tan0+x+C
    =x³/3 +C
    (I havent watched the video yet Im excited to see what he gets)

  • @syedinayat3548
    @syedinayat3548 3 роки тому +1

    When will you upload that video

  • @mohamedibrahim1023
    @mohamedibrahim1023 3 роки тому +1

    Guys do any one has a prove of quadratic denominators have linear numerator? And on the same rythme

    • @carultch
      @carultch Рік тому +3

      Using his example at 3:20:
      (8*x^2 - 10*x - 3)/[(x - 4)*(x^2 + 1)]
      Playing devil's advocate, assume that there is only a constant on top of the irreducible quadratic:
      (8*x^2 - 10*x - 3)/[(x - 4)*(x^2 + 1)] = A/(x - 4) + B/(x^2 + 1)
      Multiply to clear denominators:
      8*x^2 - 10*x - 3 = A*(x^2 + 1) + B*(x - 4)
      Expand:
      8*x^2 - 10*x - 3 = A*x^2 + A + B*x - 4*B
      Equate corresponding coefficients:
      A = 8
      B = -10
      A - 4*B = -3
      As you can see, we have 3 equations, and only 2 unknowns. A and B are both locked down by the first two equations, which means we can't satisfy the third equation. This is why we need another unknown, created by producing a linear numerator on top of the quadratic.
      If we put a quadratic numerator on top of the quadratic, you'll end up with 4 unknowns, and 3 equations, which we won't be able to solve. Also, any time the degree on the top is equal to or greater than the degree on the bottom, we can always do long division to reduce it. Partial fractions requires terms that have at least one less degree on the top, than they have on the bottom, so they start reduced.

  • @MathAdam
    @MathAdam 3 роки тому +13

    π'th

  • @devon_claude_4636
    @devon_claude_4636 10 місяців тому +1

    What’s man saying at 0:58

    • @Joseph973
      @Joseph973 9 місяців тому

      I had to turn on closed captions to figure that out lol, he's saying "and in fact we can continue"

  • @addisonyoung9130
    @addisonyoung9130 2 роки тому

    I wish you were my teacher ;)

  • @chaos-c
    @chaos-c 3 роки тому

    How you use 2 pens at once
    And switch

  • @georgesbv1
    @georgesbv1 3 роки тому

    no IT guy in the house

  • @utkarshambasta8714
    @utkarshambasta8714 3 роки тому +4

    Wrong Solution:
    8*(4)²-10(4)-3= 144-40-3=101

    • @vincenttran3342
      @vincenttran3342 2 роки тому +2

      Wrong. 8 * 16 = 128. he was right

    • @shrankai7285
      @shrankai7285 11 місяців тому +1

      @@vincenttran3342he was referring to a blooper video, where bprp said that 16 * 8 = 144 and was confused for 2 minutes

  • @yazdan4260
    @yazdan4260 3 роки тому +6

    That pokeball he is holding throughout the video
    Why?

    • @omnamahshivay761
      @omnamahshivay761 3 роки тому

      Just thinking of it and can't understand

    • @jackwang3006
      @jackwang3006 3 роки тому +7

      Microphone you can see the wire

    • @castor5580
      @castor5580 3 роки тому +1

      @@jackwang3006 yaa I have also one like that !!

    • @monisateeque1192
      @monisateeque1192 3 роки тому +7

      Pokeball gives him the superpower to remember the formulae. 😉

  • @thisusernameis
    @thisusernameis Рік тому

    nice beard bro

  • @advaykumar9726
    @advaykumar9726 3 роки тому

    First