Ergodic process | Definition with Examples | Random Vibration-5

Поділитися
Вставка
  • Опубліковано 28 січ 2025

КОМЕНТАРІ • 35

  • @yarenkaya7872
    @yarenkaya7872 8 місяців тому +1

    Crystal clear! if the statistical properties can be deduced from a single sufficiently (namely going to inf) long random sample, then the process is ergodic! This is my 3rd video and I finally heard a satisfying definition. Thank you, sir!

  • @kumgaurav0000
    @kumgaurav0000 2 роки тому +3

    you have a clear concept

  • @ericforrest8897
    @ericforrest8897 5 років тому +12

    I'm taking a communications course and my teacher couldn't even explain it this well. Hope I do well on my exam.

  • @bkquanvu3228
    @bkquanvu3228 4 роки тому +2

    The best explanation ever, thank you from Việt Nam 😍😍😍

  • @sakthishkumaarmurugan9737
    @sakthishkumaarmurugan9737 2 роки тому +2

    Clean Explaination

  • @ionutvrabie4920
    @ionutvrabie4920 4 роки тому +5

    Thank you a lot!
    I was reading Nassim Taleb and ergodicity confused me :)

  • @autaulti6883
    @autaulti6883 5 років тому +3

    Awesome explanation! Thank you very much

  • @AbdullahAhmad-xc3xl
    @AbdullahAhmad-xc3xl 4 роки тому +2

    Nice explanation, thank you!

  • @sramkumar3225
    @sramkumar3225 2 роки тому +1

    Very clearly and patiently explained! Thanks a ton!

  • @reemareema439
    @reemareema439 2 роки тому +1

    Bro Please can u help me by writing here ,What is the exact definition of band width, standard deviation...
    Because i didn' understand from the next video..
    Thanks alot

  • @trapped_monkey
    @trapped_monkey 5 років тому +2

    Thank you for the explanation. Very clear.

  • @teamdinesh2768
    @teamdinesh2768 4 роки тому +3

    Super clear! ! Thanks a lot

  • @AnalyseThiswithIO
    @AnalyseThiswithIO 3 роки тому

    This fits well with Nassim Taleb's explanation. I was thinking about tyre punctures in the projected scenario.

    • @AnalyseThiswithIO
      @AnalyseThiswithIO 3 роки тому

      A tyre puncture or axle break are catastrophe for the scenario you explained, which Taleb might call a Black Swan.

  • @ssundi
    @ssundi 4 роки тому +1

    One of the very nice explanation of erogodic process I have seen. Keep it up man.. God bless you

  • @tag_of_frank
    @tag_of_frank 4 роки тому

    How does this definition relate to the definition that it is a recurrent aperiodic Markov chain?

  • @hezi2140
    @hezi2140 4 роки тому +1

    very clear! Thank you so much!

  • @elahehghanati4011
    @elahehghanati4011 3 роки тому +1

    Thanks a lot. It was so clear and convincing

  • @sjjb9000
    @sjjb9000 5 років тому +2

    very good.thanks

  • @debasiskar4662
    @debasiskar4662 3 роки тому

    Very good explanation. I was expecting a numerical example based on the very example of driving a car. That would have made things extremely lucid. Thanks.

  • @nitishdhawan3651
    @nitishdhawan3651 4 роки тому +3

    Bhai so much underrated channel

  • @mohitbhatt6571
    @mohitbhatt6571 4 роки тому

    Bro give a video on random vibration of crankshaft

  • @poojakashyap6608
    @poojakashyap6608 3 роки тому +2

    One of the best explanations so far. Thank you !!

  • @sreyagopakumar7664
    @sreyagopakumar7664 4 роки тому +1

    Very clear explanation! Thank you so much!!

  • @mailaralingams7896
    @mailaralingams7896 5 років тому +1

    thank you so much sir

  • @DrJulianNewmansChannel
    @DrJulianNewmansChannel Місяць тому

    Regarding your heuristic description prior to your formal definition: if all you need is that the statistics of a sufficiently long time-segment of your one sample path approximate the statistics of the subsequent future behaviour of that same sample path, then I think you don't need ergodicity - just having stationarity is sufficient. Ergodicity will then give that these statistics are the same across the different sample paths (as in your formal definition) 🙂

  • @mdabdullah8819
    @mdabdullah8819 5 років тому +2

    Good pronounciation.😀