3 INSANE integrals solved using Feynman's technique and the polygamma functions

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 37

  • @emanuellandeholm5657
    @emanuellandeholm5657 Рік тому +10

    I'm all for this turning into a cooking channel. I would still watch, religiously.

  • @tzebengng9722
    @tzebengng9722 Рік тому +2

    The first integral can be gotten easily by a substitution u = cos(x), the second can be calculated using integration by parts for Stieltjes integrals with integrators cos(x) and sin((x)ln(x) and the third can be deduced from the integrals of ln(tan(x))^2 and ln(sin(x))^2 from 0 to pi/2.

  • @lexinwonderland5741
    @lexinwonderland5741 Рік тому +1

    This is a great video, and you are very personable as well as clear in explaining the math :) keep it up!

  • @m24639297
    @m24639297 Рік тому +4

    Nice trick! the first one can also be done by u=sinx and integration by part

    • @gagadaddy8713
      @gagadaddy8713 Рік тому +1

      Yes guy! You are right! The indefinite integral of the first one has answer! This make the 5:00am morning more easy and beautiful! 😆

    • @appybane8481
      @appybane8481 Рік тому

      I use u=cosx

  • @sicko5821
    @sicko5821 Рік тому +3

    Congrats for getting a brilliant sponsor! So glad to see your channel is growing :)

  • @jieyuenlee1758
    @jieyuenlee1758 10 місяців тому

    16:08
    gamma(3/2)gamma(1/2)
    ÷4gamma2
    =1/2gamma²(1/2)÷4
    =pi/8

  • @neilgerace355
    @neilgerace355 Рік тому +1

    7:42 Vinculum, yes. It is Latin for "bond".
    So I suppose it's a nice name for a spy, too :)
    Vinculum Jacobus?

  • @nicogehren6566
    @nicogehren6566 Рік тому

    very nice approachs

  • @piplus2
    @piplus2 Рік тому +1

    Amazing video as usual! How did you get to exploiting the beta function? Did you remember that expression by heart? Thanks!

  • @r_de-2617
    @r_de-2617 Рік тому +1

    Your integral solving skill is best 👍
    You can write a book on integrals

  • @AdityaVikram-el4sq
    @AdityaVikram-el4sq Рік тому +1

    LETTTTT HIMMMMM COOKKKKKKKKKKKKKKKKKKKKKKKK!!!!!!!!!!!!!!!!!!!!

  • @corbonmaths9597
    @corbonmaths9597 Рік тому

    Thank you very much. I find out the Feynman's technique thanks to you.

  • @MrWael1970
    @MrWael1970 Рік тому

    Really Amazing and i enjoyed with this brilliant solution.

  • @yudoball
    @yudoball Рік тому +1

    Congrats to the sponsor ship!

  • @AHMED_-123..
    @AHMED_-123.. Рік тому

    What is the name of program you use for writing please

  • @MathOrient
    @MathOrient Рік тому

    Really awesome :)

  • @ashishraje5712
    @ashishraje5712 Рік тому

    Amazing masterpieve

  • @minhnguyen1338
    @minhnguyen1338 Рік тому +1

    I regconize that all 3 integrals end up with very neat result (doesn't imply digamma function or Euler's constant...)
    so is there anyway to apporach without using the digamma function or not

    • @riadsouissi
      @riadsouissi Рік тому

      Yes. The first one for instance, just integrate by part, integrate sin(x) as 1-cos(x) and derive log(sin(x) as cos(x)/sin(x). The extra 1 term in 1-cos(x) is to avoid infinity of log(sin(x)) when x=0. You will end up with a rather simple integral of cos(x)^2-cos(x)/sin(x) = (1-sin(x)^2-cos(x))/sin(x) = 1/sin(x)-sin(x)-cot(x), which are easy to integrate.
      Second would I'd guess would be similar (I didn't try) by replacing sin(x)^2 by (1-cos(2x))/2 then similar approach as 1st one.
      Third one is a known integral. You can find many references to it.

    • @minhnguyen1338
      @minhnguyen1338 Рік тому

      @@riadsouissi thank you so much. I appreciate it.

  • @holyshit922
    @holyshit922 Рік тому

    sin(x)ln(sin(x))
    There is easy to find indefinite integral iven for calculus I or Calculus II students
    (I dont know which it is in US In Europe it is Calculus I)
    Integration by parts , Pythagorean identity , substitution for cosine ,partial fraction decomposition and we should get
    F(x)=cos(x)(1-ln(sin(x)))+ln((1-cos(x))/sin(x))
    Integral Int(sin(x)^2ln(sin(x)),x=0..Pi/2)
    also can be calculated by parts
    (but without calculating antiderivative)
    Your solution is not as simple as possible at least for this two integrals
    3
    Int(ln^2(tan(x)),x=0..Pi/2)=Int(ln^2(t)/(1+t^2),t=0..infinity)
    =Int(ln^2(t)/(1+t^2),t=0..1)+Int(ln^2(t)/(1+t^2),t=1..infinity)
    =Int(ln^2(t)/(1+t^2),t=0..1)+Int(ln^2(1/u)/(1+1/u^2)(-1/u^2),u=1..0)
    =Int(ln^2(t)/(1+t^2),t=0..1)+Int(ln^2(u)/(u^2+1),u=0..1)
    =Int(ln^2(u)/(1+u^2),u=0..1)+Int(ln^2(u)/(u^2+1),u=0..1)
    =2Int(ln^2(u)/(1+u^2),u=0..1)
    =2Int(sum((-1)^ku^{2k}ln^2(u),k=0..infinity),u=0..1)
    =2sum((-1)^k Int(u^{2k}ln^2(u),u=0..1),k=0..infinity)
    =2sum((-1)^k (2/(2k+1)u^(2k+1)ln^2(u)|_{0}^{1}-2/(2k+1)Int(u^(2k)ln(u),u=0..1)),k=0..infinity)
    =2sum((-1)^k (-2/(2k+1))Int(u^(2k)ln(u),u=0..1),k=0..infinity)
    =2sum((-1)^k (-2/(2k+1))(1/(2k+1)u^(2k+1)ln(u)|_{0}^{1}-1/(2k+1)Int(u^{2k},u=0..1)),k=0..infinity)
    =2sum((-1)^k (-2/(2k+1))(-1/(2k+1)Int(u^{2k},u=0..1)),k=0..infinity)
    =4sum((-1)^k/(2k+1)^3,k=0..infinity)
    Int(ln^2(tan(x)),x=0..Pi/2)=Int(ln(sin(x)/cos(x))^2,x=0..Pi/2)
    =Int((ln(sin(x))-ln(cos(x))^2,x=0..Pi/2)
    =Int(ln^2(sin(x)),x=0..Pi/2)-2Int(ln(sin(x))ln(cos(x)),x=0..Pi/2)+Int(ln^2(cos(x))),x=0..Pi/2)
    Int(ln^2(tan(x)),x=0..Pi/2)=Int(ln^2(sin(x)),x=0..Pi/2) - 2Int(ln(sin(x))ln(cos(x)),x=0..Pi/2) + Int(ln^2(cos(x))),x=0..Pi/2)
    2Int(ln(sin(x))ln(cos(x)),x=0..Pi/2) = Int(ln^2(sin(x)),x=0..Pi/2) + Int(ln^2(cos(x))),x=0..Pi/2) - Int(ln^2(tan(x)),x=0..Pi/2)
    2Int(ln(sin(x))ln(cos(x)),x=0..Pi/2) = Int(ln^2(sin(Pi/2-t)),(-1)t=Pi/2..0) + Int(ln^2(cos(x))),x=0..Pi/2) - Int(ln^2(tan(x)),x=0..Pi/2)
    2Int(ln(sin(x))ln(cos(x)),x=0..Pi/2) = Int(ln^2(cos(t)),t=0..Pi/2) + Int(ln^2(cos(x))),x=0..Pi/2) - Int(ln^2(tan(x)),x=0..Pi/2)
    2Int(ln(sin(x))ln(cos(x)),x=0..Pi/2) = 2Int(ln^2(cos(t)),t=0..Pi/2) - 2sum((-1)^k Int(u^{2k}ln^2(u),u=0..1),k=0..infinity)
    Int(ln(sin(x))ln(cos(x)),x=0..Pi/2) = Int(ln^2(cos(t)),t=0..Pi/2) - sum((-1)^k Int(u^{2k}ln^2(u),u=0..1),k=0..infinity)
    Int(ln(sin(x))ln(cos(x)),x=0..Pi/2) = Int(ln^2(cos(t)),t=0..Pi/2) -2sum((-1)^k/(2k+1)^3,k=0..infinity)
    But Int(ln^2(cos(t)),t=0..Pi/2) can be problematic for Calculus II students
    also problematic may be calculating this sum
    I saw solution with double sum (Michael Penn's video)

  • @danielrosado3213
    @danielrosado3213 Рік тому

    First two are relatively simple because d/dx (ln(sinx)) is cotx but I’m excited for the last one

  • @Akhirahmindset
    @Akhirahmindset Рік тому

    Nice to have u in crescent

  • @Nifton
    @Nifton Рік тому +1

    Today I literally came to see your Brilliant ad 😂

  • @plutothetutor1660
    @plutothetutor1660 Рік тому

    Please Please please integrate the probability density function of the student's t distribution from -∞ to ∞, it's such a satisfying result

  • @ThAlEdison
    @ThAlEdison Рік тому +1

    Wow, you can't even cook. I mean Papa Flammy bakes, that's what I expect out of math UA-camrs. 😊

    • @ThAlEdison
      @ThAlEdison Рік тому

      srsly though, I've been watching this channel because I need my fix of integration under the integral sign and contour integrals

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    Il n1, integrazione per parti.. ln2-1.. Il n2, pi/8-ln2(pi/4)..il 3 boh...mi deve ancora venire l'idea giusta

  • @manstuckinabox3679
    @manstuckinabox3679 Рік тому +1

    More feynmann?? surely you must be joking mister Kamaal.

    • @maths_505
      @maths_505  Рік тому

      Not just feynman.....we got them digamma bois too

    • @manstuckinabox3679
      @manstuckinabox3679 Рік тому

      @@maths_505 Bruh I learned about the digamma by inconvenience I was trying to understand analytic continuation, the absolute gigachad of a professor explained the concept flawlessly using gamma as the example.

    • @manstuckinabox3679
      @manstuckinabox3679 Рік тому

      @@maths_505 dId YoU kNoW yOu CaN eAsiLy ProVe Bessel uSinG cOmPleX AnAlySis?

  • @cycklist
    @cycklist Рік тому

    BOOOO for saying 'zee'.