Respiration cellulaire : glycolyse, cycle de Krebs, coenzymes NAD+ et chaîne respiratoire

Поділитися
Вставка
  • Опубліковано 10 гру 2022
  • Une séquence pour mieux comprendre les étapes de la respiration cellulaire. La respiration est un exemple de métabolisme énergétique qui se déroule à l’intérieur des cellules en utilisant le glucose disponible. Le glucose pénètre à l’intérieur de la cellule grâce à des transporteurs transmembranaires spécifiques. Dans la cellule le glucose est transformé en pyruvate au niveau du cytoplasme, constituant ainsi la première étape de la respiration. Il s’agit de la glycolyse. Il existe dans les cellules des organites particuliers comme les mitochondries. Le pyruvate va gagner la mitochondrie pour y subir des transformations correspondant à la deuxième étape de la respiration. Il s’agit du cycle de Krebs. Enfin, la troisième étape de la respiration correspond à la régénération des coenzymes du métabolisme impliqués dans les différentes réactions d’oxydations des molécules organiques. Cette dernière étape fait intervenir le dioxygène. Au cours de la glycolyse, le glucose est transformé en pyruvate ou acide pyruvique. Le glucose est une molécule organique. Au cours de la glycolyse, le glucose est transformé en pyruvate. Lors de cette transformation le glucose a subi une réaction d’oxydation cédant ainsi certains de ses protons et de ses électrons. Le Nicotinamide adénine dinucléotide ou NAD est un coenzyme qui va permettre l’oxydation du glucose. Le NAD est un coenzyme à l’état oxydé. On le note NAD+ car il possède une charge positive. Il va accepter les 2 électrons et les deux protons issus du glucose, donnant ainsi naissance à des coenzymes à l’état réduit sous forme NADH,H+ (dans le détail, NAD+ accepte deux électrons et un proton, c'est à dire qu'il accepte en réalité un ion hydrure H-. Il s'ensuit une neutralisation des charges entre NAD+ et H-, donnant naissance au NADH. Celui-ci est alors associé au proton H+ restant, l'ensemble constituant le NADH,H+). Selon le niveau de simplification pédagogique utilisé, on peut aussi lire NAD/NADH2 ou R/RH2. Dans ce dernier cas, R correspond au coenzyme. Il faut l’intervention de deux coenzymes pour assurer l’oxydation d’une molécule de glucose. Cette transformation biochimique de la glycolyse s’accompagne aussi d’une production d’énergie : L’oxydation d’une molécule de glucose produit deux molécules d’ATP à partir d’ADP+Pi. La deuxième étape de la respiration se déroule dans les mitochondries qui sont des organites spécialisés dans la respiration. La mitochondrie possède une membrane externe et une membrane interne délimitant un espace intermembranaire. On distingue les crêtes mitochondriales et la matrice. L’espace intermembranaire et la matrice sont deux compartiments impliqués dans la respiration. Voyons les étapes du cycle de Krebs : Il s’agit d’une série de décarboxylations oxydatives du pyruvate. Les deux molécules de pyruvate provenant de la glycolyse vont être transformées en 6 molécules dioxyde de carbone. Il s’agit d’une oxydation du pyruvate. Celle-ci fait de nouveau intervenir des coenzymes NAD+ qui vont accepter les protons et les électrons du pyruvate. Cette réaction d’oxydation du pyruvate produit elle aussi de l’énergie sous la forme de deux molécules d’ATP à partir d’ADP+Pi. Cette série de décarboxylations oxydatives peut être présentée sous la forme d’un cycle connu sous le nom de cycle de Krebs. Les étapes de la glycolyse et du cycle de Krebs ont mobilisé de nombreux coenzymes qui se retrouvent à l’état réduit. Pour qu’ils puissent servir à nouveau, il est nécessaire que ces coenzymes soient régénérés. La troisième étape de la respiration correspond donc à l’oxydation des coenzymes ou transporteurs d’électrons. Elle se déroule au niveau de la membrane des mitochondries et des crêtes mitochondriales. La membrane interne des mitochondries possède de nombreux transporteurs d’électrons qui vont prendre en charge les électrons issus des coenzymes NADH,H+, constituant la chaîne respiratoire. Ces protons et électrons qui ont transité par la chaîne respiratoire vont être acceptés par le dioxygène issu de la respiration formant ainsi des molécules d’eau : le dioxygène joue ainsi le rôle d’accepteur final des électrons. La membrane interne des mitochondries possède de nombreuses sphères pédonculées jouant le rôle d’ATP synthase, des enzymes productrices d’ATP. Le flux de protons H+ dans l’espace intermembranaire a permis de mettre en place un gradient de protons et le flux de protons à travers les ATPases est responsable de la synthèse de 32 molécules d’ATP. Au final, la respiration cellulaire a permis la synthèse de 36 molécules d'ATP à partir de l'oxydation d'une molécule de glucose.
  • Наука та технологія

КОМЕНТАРІ • 34

  • @corentinr484
    @corentinr484 6 місяців тому +10

    Incroyable vidéo, plus clair qu'un CM de 1h. Merci beaucoup !

  • @Promo6_Medecine_UADB
    @Promo6_Medecine_UADB 5 місяців тому +5

    Merci au fond du cœur grâce à vous j’ai compris bcp de chose sur la respiration cellulaire avec ces trois étapes:glycolyse, cycle de krebs et la chaine respiratoire ❤

  • @vincentmaubois6284
    @vincentmaubois6284 2 місяці тому +3

    MERCI BEAUCOUP VOUS ÊTES GÉNIAL

  • @rayanzz7487
    @rayanzz7487 Рік тому +25

    bonjour, durant vos procahine vidéo, serait-il possible de baisser la musique et de ne pas le remonter le son durant les petits temps d'arrêt, car elle déconcentre , sinon très bonne explication et merci

    • @JoyezSVT
      @JoyezSVT  11 місяців тому +6

      Pour la musique j'ai choisi un compromis. Au départ j'avais choisi celle ci 😌 ua-cam.com/video/l482T0yNkeo/v-deo.html

  • @alsoknownasanne5506
    @alsoknownasanne5506 4 місяці тому +2

    je vous remercie pour cette vidéo parfaitement synthétique :)

  • @nephthabasambi8496
    @nephthabasambi8496 10 місяців тому +3

    Merci beaucoup pour cette séquence scientifique trop riche. ❤

  • @louiseauber9646
    @louiseauber9646 Рік тому +2

    Incroyable merci! Très détaillé très clair

  • @MDK-qc9li
    @MDK-qc9li Рік тому +5

    Très complet.. bonne explication simple merci.

  • @victorlhermillier5937
    @victorlhermillier5937 2 місяці тому +1

    très bon résumé merci

  • @niavibes8564
    @niavibes8564 5 місяців тому +1

    Merci beaucoup 🥺❤️

  • @guilhermethevines5656
    @guilhermethevines5656 6 місяців тому +1

    merci bcp!!!

  • @rashkaelfe2797
    @rashkaelfe2797 26 днів тому +1

    super clair merci !

  • @Joujou350
    @Joujou350 Рік тому +2

    Merci beaucoup !!!

  • @mahimcht
    @mahimcht 11 місяців тому

    très clair, merci beaucoup vous m'avez bien aidé !!

  • @marianne1661
    @marianne1661 11 місяців тому +1

    Merci pour cette vidéo :)

    • @JoyezSVT
      @JoyezSVT  11 місяців тому +1

      Je t'en prie :)

  • @amidieng6477
    @amidieng6477 12 днів тому +1

    Merci bien tu me sauves

  • @djenabernava321
    @djenabernava321 Рік тому +2

    merci

  • @user-rv4pe3ui8t
    @user-rv4pe3ui8t 4 місяці тому +1

    1k 🎉

  • @finopatcapone7009
    @finopatcapone7009 8 місяців тому +1

    super vidéo, merci. Une question me vient : combien de temps moyen pour ces 3 phases ?

    • @JoyezSVT
      @JoyezSVT  8 місяців тому +2

      La respiration cellulaire est un processus qui se déroule de façon continue dans les cellules mais dont la vitesse est régulée en fonction des besoins et des apports en glucose. Chaque étape de la respiration cellulaire (glycolyse, cycle de Krebs et réoxydation des coenzymes) se décompose elle-même en nombreuses étapes faisant intervenir des enzymes. La question que vous posez revient à s'intéresser à la cinétique enzymatique résultant de chacune de ces étapes (vitesse initiale des réactions, constantes de Michaelis). La vitesse des réactions dépend en particulier de la concentration en substrat, la concentration en enzymes et certains paramètres physico-chimiques.

    • @finopatcapone7009
      @finopatcapone7009 8 місяців тому +1

      @@JoyezSVT effectivement plus complexe que je ne le pensais, merci pour la réponse

  • @TALIBECHEIKH-hx8tq
    @TALIBECHEIKH-hx8tq 3 місяці тому +1

    Je suis fière de vous comment peux je faire pour vous être ami

  • @maboudis
    @maboudis Рік тому +1

    C'est quoi un proton h+ mais c'est un atome de charge positive vu qu'il a perdu son unique électron

    • @JoyezSVT
      @JoyezSVT  Рік тому +1

      L'atome d'hydrogène est constitué d'un proton et d'un électron. H+ est donc cette entité qui a perdu son électron. Elle est constituée d'un seul proton. Le détail est expliqué dans la description de la vidéo.

  • @emrepaquindodooglu5179
    @emrepaquindodooglu5179 3 місяці тому

    Nad +

  • @dynastykingthereal
    @dynastykingthereal 2 місяці тому +1

    1:42 quels protons et électrons ? AH OK LHYDROGENE a 1 proton et 1 électron je comprends mieux