The Derivative Equals The Square

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 61

  • @fahrenheit2101
    @fahrenheit2101 3 місяці тому +29

    Neat and simple. I suppose one simple thing to add would be the intuition behind the Cauchy product, namely that you could, say, put the terms in a multiplication grid, and the Cauchy product simply adds all terms in the grid by going along the diagonals.

  • @louthurston8088
    @louthurston8088 2 місяці тому +2

    First proof nice and immediate. Second an interesting counting procedure.

  • @terdragontra8900
    @terdragontra8900 3 місяці тому +9

    For any solution to f’(x) = f(x)^2, f(x + c) is also a solution, and the set of all solutions is a one parameter family, so the only functions with this property are 1/(c - x)

    • @silver6054
      @silver6054 2 місяці тому +3

      Well, also the trivial functions f(x)=0 which isn't of that form

    • @terdragontra8900
      @terdragontra8900 2 місяці тому +1

      @@silver6054 Oh oops! Though if you “let c be infinity” and accept my lack of rigor you do get that, and the one parameter family is now topologically a circle, which is pretty cool.

  • @r2d2slair24
    @r2d2slair24 3 місяці тому +15

    Only applicable when |x|

    • @Sir_Isaac_Newton_
      @Sir_Isaac_Newton_ 3 місяці тому +1

      It also works when x = 0.72927499488311371218371090973371

    • @TheInterestingInformer
      @TheInterestingInformer 3 місяці тому

      @@Sir_Isaac_Newton_also applicable when x = 0.972762946715444173900173976153849912547988155025108

    • @DonutOfNinja
      @DonutOfNinja 3 місяці тому +6

      ​@@Sir_Isaac_Newton_The absolute value of a number between and not including 0 and 1 is obviously less than 1

    • @briogochill6450
      @briogochill6450 2 місяці тому

      Uh, why ?

    • @r2d2slair24
      @r2d2slair24 2 місяці тому +1

      @@briogochill6450 Its a rule for binomial expansion of negative and decimal index.
      Otherwise series will always coverge to infinity.

  • @Dedicate25
    @Dedicate25 3 місяці тому +10

    Your explanation makes things easy to grasp.👏

  • @Fysiker
    @Fysiker 3 місяці тому +3

    I subscribed when I first saw your video on Lorentz transformations, I appreciate the level of detail you put into your explanations and your clarity stands out.

  • @experimentingalgorithm1546
    @experimentingalgorithm1546 3 місяці тому +2

    Amazing result, I feel delighted to be your early subscriber

  • @BerndSchnabl
    @BerndSchnabl 3 місяці тому +4

    all the way I was thinking ... that's not going to work ... that's not going to work ... that's not going to work ... that's not going to work .... and then .... ooohhh it DOES work 😂

    • @fifiwoof1969
      @fifiwoof1969 3 місяці тому +3

      Only if abs(x) < 1
      1/(1-x) isn't continuous

  • @Vadim_Ozheredov
    @Vadim_Ozheredov 3 місяці тому +1

    2:29 Microphone distortion leads to EX-CUTE 😂

  • @TheFarmanimalfriend
    @TheFarmanimalfriend 2 місяці тому +1

    Great explanation. World class. Thank you.

  • @alipourzand6499
    @alipourzand6499 3 місяці тому +2

    Ok, this time I subscribed to your channel. First time that I understand the Cauchy thing. ☺

  • @chadx8269
    @chadx8269 3 місяці тому +3

    That is beautiful.

  • @Jonas-gm4my
    @Jonas-gm4my 3 місяці тому +1

    I understood it yippiiiieeee. Great explanation

  • @BuddyNovinski
    @BuddyNovinski 3 місяці тому +2

    Wow! I just came across the piano recital on You Tube from four years ago. I was mispronouncing your first name. I can't understand why I seem to have a mental block on infinite series. Maybe it'll come to me one day. I have the time now to learn this stuff. Years ago, I found out why so many of us can't get math, so I could blame my professors, but I think it's a third the student, a third the text, and a third the professor. I'll always remember that in ten minutes how you explained LaPlace transforms that I could understand, 😀without the "piecewise continuous" confusion and the lack of explaining how the integral works I had back in the fall of 1976, which left me confused for nearly a half century.😵‍💫

  • @Naman_shukla410
    @Naman_shukla410 3 місяці тому +7

    Hey bro it's 3:45 am here good morning 😅

  • @ronsmythe7764
    @ronsmythe7764 3 місяці тому +1

    Very good.
    Isn't d/dx((1-x)^-1) =-(1-x)^-2

    • @MuPrimeMath
      @MuPrimeMath  3 місяці тому +1

      No, because the negative signs from the power rule and from the derivative of 1-x cancel out.

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij 3 місяці тому

    Thanks for making this video

  • @Chrisuan
    @Chrisuan 3 місяці тому

    very nice explanation! more like this please :)

  • @hqTheToaster
    @hqTheToaster 3 місяці тому +1

    Is it possible to construct a function whose half-order derivative is equal to the sum of its second and third prior result? f(x) {'...' }(1/2) = f(x-2)+f(x-3) ?

  • @Metaverse-d9f
    @Metaverse-d9f 3 місяці тому +6

    you forgot to mention that the absolute value of x must less than 1..

    • @AbhinavKumar-nh8dl
      @AbhinavKumar-nh8dl 3 місяці тому +1

      Exactly I was also thinking the same thing

    • @RickyMud
      @RickyMud 3 місяці тому +2

      @@AbhinavKumar-nh8dli was also thinking of saying I was thinking that this is exactly what I was thinking of saying

    • @TarKrypton
      @TarKrypton 3 місяці тому +2

      Not necessarily, if you treat the series as formal power series, you don’t have to worry about convergence

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 місяці тому

    d/dx(1/1-x)=1/(1-x)^2...(1/1-x)^2=1/(1-x)°2

  • @mahdiimaninezhad2433
    @mahdiimaninezhad2433 3 місяці тому

    It is better to have a look at geometric aspect of this. Suppose a square with length 1+x+x^2+x^3+.... and try to evaluate the area of the square by its induced partitions.

    • @mab9316
      @mab9316 2 місяці тому

      Then you have to derivate another square, but how!?

  • @shishirjha7744
    @shishirjha7744 3 місяці тому

    x

  • @leonardobarrera2816
    @leonardobarrera2816 3 місяці тому

    thanks dude for this video

  • @anghme28ang11
    @anghme28ang11 3 місяці тому

    Why would the coefficient be n+1

  • @Viki13
    @Viki13 3 місяці тому

    Cool result

  • @aidarosullivan5269
    @aidarosullivan5269 3 місяці тому

    Equation of friction?🤔

  • @elektronikvideos-bremen2873
    @elektronikvideos-bremen2873 3 місяці тому +1

    0:30 No, I don't agree. E.g. take x=5 than 1/(1-x)=-0.25 but the sum of all powers will diverge towards infinity.
    More worse: take x=0 and you will "prove" infinity=0 👎

    • @MuPrimeMath
      @MuPrimeMath  3 місяці тому +2

      The infinite sum equation holds for |x|

    • @AlgoFodder
      @AlgoFodder 3 місяці тому

      @@MuPrimeMath If you mentioned "-1 < x < 1" at the start of the video it would have saved me scrolling down here to find this comment! Thanks though :)

  • @jo5i4h
    @jo5i4h 3 місяці тому

    nice video i like the huh? cat

  • @anghme28ang11
    @anghme28ang11 3 місяці тому

    Why is the sum equal to 1/1-x? If i sub in x it clearly is not equal

    • @gowipe-grandcross
      @gowipe-grandcross 3 місяці тому

      It is equal only if -1 < x < 1

    • @super0spore0fan
      @super0spore0fan 3 місяці тому

      Say you have a finite sum Sn = 1 + q + q² + q³ + ... + q^n
      Then, by distributive property, q*Sn = q + q² + ... q^(n+1)
      If you subtract Sn from q*Sn, you get a telescoping series, which results in q^(n+1) - 1. (Apply commutative property to aggregate each equal term on both series)
      Simply divide each side by q and you get the result of the original finite sum. Sn = (q^(n+1) - 1)/q
      Now, it happens that if |q|

    • @BridgeBum
      @BridgeBum 3 місяці тому

      Perhaps you have seen how to solve 1+1/2+1/4+1/8+1/16+...
      That sum is the first value (1) over 1 minus the common ratio (1-1/2) or 2. That formula is 1/1-r = 1+r+r^2+r^3+...
      This only converges when -1

  • @Hatifnote
    @Hatifnote 2 місяці тому

    Seulement pour série infinie
    Sinon
    1+2x+3x² ≠ (1+x+x²)²

  • @tomholroyd7519
    @tomholroyd7519 3 місяці тому

    dx is a square matrix [[0, 1], [0, 0]]

  • @akultechz2342
    @akultechz2342 3 місяці тому

    -2/x = S(xⁿ)

    • @akultechz2342
      @akultechz2342 3 місяці тому

      Use S(G.P.) formula for x < 1 and solve. Since if x > 1 then LHS -> -1
      RHS -> ±infinity
      Hence x < 1

  • @archangecamilien1879
    @archangecamilien1879 2 місяці тому

    If it's true, lol, and I'm guessing it is, otherwise the video wouldn't say it is, lol...write out the partial sums, etc, do the operations on the partial sums, take the limits, then establish they are the same, etc...

  • @anestismoutafidis4575
    @anestismoutafidis4575 2 місяці тому

    ∫ (Σ ♾️ /n=0 x^n)•dx =(Σ•1/2• ♾️)^2
    (Σ1/2• ♾️ )^2 = [( ♾️ /2)^2+c]
    [ ♾️^2 /4+c]=[♾️ +c]

  • @Metaverse-d9f
    @Metaverse-d9f 3 місяці тому

    you can try to do the derivative of the geometric series formula with respect to x AND n.

  • @거미남자_spidy
    @거미남자_spidy 3 місяці тому

    🇩‌f=f²......

  • @lucasfrykman5889
    @lucasfrykman5889 3 місяці тому +3

    Clean shaven fits you better bro. Embrace your youth when you still have it.

  • @saiello2061
    @saiello2061 2 місяці тому

    Stoopid cat... 😁