Finite Dimensional Vector Spaces IIT JAM Question | Mathematics CUET (PG) 2025 Question | Lec-8

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ • 12

  • @iitjam_mathematics
    @iitjam_mathematics  4 години тому

    ➡ 𝐅𝐑𝐄𝐄 𝐋𝐞𝐜𝐭𝐮𝐫𝐞𝐬, 𝐩𝐫𝐚𝐜𝐭𝐢𝐜𝐞 𝐪𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬 & 𝐦𝐨𝐫𝐞: bit.ly/41buOC0
    💰𝐏𝐮𝐫𝐜𝐡𝐚𝐬𝐞 𝐋𝐢𝐯𝐞 𝐂𝐨𝐮𝐫𝐬𝐞 𝐇𝐞𝐫𝐞 𝐚𝐭 𝐁𝐢𝐠 𝐃𝐢𝐬𝐜𝐨𝐮𝐧𝐭𝐞𝐝 𝐏𝐫𝐢𝐜𝐞 :- bit.ly/4dZ7UD9
    💰𝐏𝐮𝐫𝐜𝐡𝐚𝐬𝐞 𝐑𝐞𝐜𝐨𝐫𝐝𝐞𝐝 𝐂𝐨𝐮𝐫𝐬𝐞 𝐇𝐞𝐫𝐞 𝐚𝐭 𝐁𝐢𝐠 𝐃𝐢𝐬𝐜𝐨𝐮𝐧𝐭𝐞𝐝 𝐏𝐫𝐢𝐜𝐞 :- surl.li/dsabzx
    📺 𝐘𝐨𝐮𝐓𝐮𝐛𝐞 𝐂𝐡𝐚𝐧𝐧𝐞𝐥:: ua-cam.com/channels/g7ESZu0ESsWIHAwysBetbQ.html
    📲 𝐓𝐞𝐥𝐞𝐠𝐫𝐚𝐦 𝐆𝐫𝐨𝐮𝐩: t.me/IITJAM_NBHM_MScEntranceMathDSCN
    📸 𝐈𝐧𝐬𝐭𝐚𝐠𝐫𝐚𝐦 𝐏𝐚𝐠𝐞 : instagram.com/ifas_maths__iit_jam_cuet_nbhm/
    📘 𝐅𝐚𝐜𝐞𝐛𝐨𝐨𝐤 𝐏𝐚𝐠𝐞 : facebook.com/MScEntranceMaths/

  • @hrishutiwari4929
    @hrishutiwari4929 2 дні тому +3

    Sir next lecture mein ye explain kr dijiyega

  • @Nainagour-l1h
    @Nainagour-l1h 2 дні тому +1

    Sir homework ka answer option d is correct thank you sir radhe radhe 🙏

  • @hrishutiwari4929
    @hrishutiwari4929 2 дні тому +3

    Consider the action of S4 on Z [ x1,x2,x3,x4] given by σ.p(x1,x2,x3,x4) = p( xσ(1), xσ(2), xσ(3), xσ(4) ) for σ belongs to S4.Let H ⊆ S4 denote the cyclic subgroup generated by (1423). Then the cardinality of orbit OH(x1x3+x2x4) of H on the polynomial x1x3 + x2x4 is

    • @Nainagour-l1h
      @Nainagour-l1h 2 дні тому +1

      Since H is generated by (1423) the orbit x1x3+x2x4 under the action of H is the set {(1423)^n(x1x2+x2x4):n belong z}
      Calculate the value of (1423)^4(x2x3+x2x4) for n=0,1,2,3,4
      (1423)^0(x1x3+x2x4)=(x1x3+x2x4)
      (1423)^1(" "")=(x4x1+x3x2)
      (1423)^2( """)=(x2x4+x1x3)
      (1423)^3( """")=(x3x2+x4x1)
      (1423)^4( """)=(x1x3+x2x4)
      The cardinality of the orbit oH (x1x3+x2x4) of H on the polynomial x1x3+x2x4 is 4
      Answer 4

  • @mansigupta9604
    @mansigupta9604 День тому +1

    D is the correct answer

  • @hitendrakumar2070
    @hitendrakumar2070 2 дні тому +2

    Option d will be the absolutely correct answer

  • @hariomgupta9116
    @hariomgupta9116 День тому +1

    H.W ka D correct hoga

  • @as-bj4hq
    @as-bj4hq 2 дні тому +1

    Option d correct

  • @abhijitdas2976
    @abhijitdas2976 День тому +1

    8:55 sir our question is G is not mentioned is abelian, cyclic, so kase HK is group

  • @abhijitdas2976
    @abhijitdas2976 2 дні тому +1

    Option d